FPGA Based Traffic Sign Detection for Automotive
Camera Systems

Fynn Schwiegelshohn, Lars Gierke and Michael Hiibner
Chair for Embedded Systems of Information Technology
Ruhr-Universitit-Bochum
Bochum, Nord-Rhein-Westfalen
Email: {Fynn.Schwiegelshohn; Lars.Gierke; Michael.Huebner} @rub.de

Abstract—Advanced driver assistance systems (ADAS) have
become very prominent in todays automobiles. The technological
advancement of already familiar assistance systems enable the
car to now autonomously assess the current situation and react
accordingly. In terms of data processing, there is no difference
between actually acting i.e. accelerating, braking or steering and
just issuing warnings to alert the driver of a dangerous situation.
In this paper, we introduce a camera based image processing
system for traffic sign detection for FullHD resolution. This
system is able to detect speed limit traffic signs but additional
traffic signs can be implemented using the same model. The
hardware components consist of a Microblaze softcore from
Xilinx and an extended IP core for HDMI-in and out signals.
The system is implemented on a a Spartan-6-FPGA. For image
acquisition, an off-the-shelf car camera is used. The developed
system is able to reliably detect traffic signs on short distances
on static images as well as on image streams.

Keywords: Atlys Board; FPGA; Spartan-6; Image processing;
Traffic sign detection;

I. INTRODUCTION

In the last years, image resolutions have increased con-
siderably up to the FullHD resolution of 1920 x 1080 pixels.
Currently, we are at the border of 4k resolutions becoming
publicly available and development for even higher resolutions
is underway. With these higher resolutions in images, object
detection at larger distances becomes feasible but also higher
data bandwidth is required. For a FullHD image with 60 frames
per second (fps), the data stream will transfer 148.500.000
pixel per second including vertical and horizontal blanking pe-
riods. Here, the challenge is to analyze the huge amount of data
without discarding or missing important information. When
targeting applications in a safety critical environment, real-time
constraints also have to be applied since the system should
either prevent or inform the user well enough in advance of a
dangerous situation. Modern high-end processors have enough
computational power for these tasks but also require a lot of
energy for operation. For embedded systems such as ADAS
however, small power consumption and reliability is of high
importance. Therefore, FPGAs provide an promising approach
to solve this problem since they can adapt their hardware
based to the current need of the application. Additionally, high
cost pressure in the automotive domain enforces the usage of
efficient hardware like FPGAs which reach high computational
performance and low power consumption without requiring
active cooling at design and also at run-time. A high frame
rate is for traffic sign detection very important, since it ensures

978-1-4673-7942-7/15/$31.00 (©2015 IEEE

that objects of interest can easily be tracked over subsequent
images. When a camera is recording images with 60 fps,
even high velocities do not cover large distances as seen in
equation (1).
km 1
s f =v-1t=180—— "+ —sec = 0.83m 1
CAM W60 (1)
Generally, high image resolutions are not mandatory for traffic
sign detection but they do increase the detection range of the
traffic sign. With a higher image resolution, distant objects
have more pixels and thus are easier to identify.

In academia and in industry, traffic sign detection is an
active research field. The leading company in automotive
computer vision is Mobileye Vision Technologies. They devel-
oped a System-on-a-chip (SoC) called EyeQ which supports
applications such as lane, vehicle, traffic sign, and pedestrian
detections [1]. The initial version is composed of two ARM
processors and four specialized vision computing engines
(VCE). One ARM CPU is responsible for chip control, com-
munication to the vehicle, and general IO while the other ARM
CPU executes computer vision algorithms which are not suited
for dedicated hardware. The current architecture of EyeQ is
heterogeneous with four CPU cores and several application
specific processors for various ADAS algortihms [2]. Almost
all of the leading automotive manufacturers cooperate with
Mobileye when automotive computer vision is concerned.
Traffic sign detection is also a very important research field
in academia. Miiller et al. propose a traffic sign recognition
multi-core system based on LEON-3 processors [3]. The
authors performed a design space exploration to determine
what architecture fulfills their constraints. This resulted in
an architecture with 2 LEON-3 processors and one hardware
implemented support vector machine kernel. Most of the image
processing was done on the LEON-3 processors while the
classification was done on the dedicated hardware with a
frame rate of 1.6 fps. In our approach, we are targeting 60
fps and aim to use only one processor, the Microblaze, for
frame based image processing and dedicated hardware for
pixel based pre-processing. In [4], Waite and Oruklu propose
a traffic sign detection system based on hue detection and
morphological filtering. The image is sent from the Microblaze
to the dedicated hardware where the candidates for traffic signs
are labeled. Then the Microblaze perfoms template matching
on all labeled objects. The authors state that the most time
consuming process is the template matching and thus limits
this system to being only able to detect traffic signs within 50
feet of distance at a travel velocity of 44 miles per hour or

® 28 ® 28

Fig. 1. Traffic Signs and their color feature detection

less. Since we aim to enable a frame rate of 60 fps with an
image resolution of 1080p, we are able to detect traffic signs
at a larger distance and at higher velocities. Han and Oruklu
introduce a real-time traffic sign recognition system based
on the Zynq FPGA [5]. They implemented a similar system
to [4] on the Zynq SoC with hue detection, morphological
filtering, candidate labeling, and finally template matching.
They managed to increase the performance compared to [4]
by the factor 8 to 96.5 ms. This still only results in a possible
frame rate of 10 fps which we aim to increase by the factor 6.

Our paper consists of the following parts. Sections II
and III describe the hardware and software feature extraction
preprocessing steps which are needed for the traffic sign
detection introduced in section IV. We conclude this paper
with section V.

II. HARDWARE FEATURE EXTRACTION

As already mentioned in section I, the feature extraction has
to fulfill certain requirements. One is that this system should
be able to process

1
1920 - 1080 - 60— + Blankhorizontal + Blankvertical

sec

1
=2200- 1125 - 60— = 148.500.000
sec

pixel per second. Therefore, all hardware components should
have an operation frequency of at least fiogop,cofps =
148,5MHz. Another requirement is the robustness towards
varying lighting conditions. When using the RGB color space,
difference in lighting conditions changes every color compo-
nent, thus making color classification with simple thresholding
not possible. In order to eliminate the lighting dependency,
the RGB color space is converted in to the Y C,C, color
space [13]. Since the Y parameter represents the luma com-
ponent in the Y'C,C). color space, object detection based on
color information from the C; and C, component is possible.
An own implementation of the color space conversion is not
necessary since Xilinx provides an IP core with the required
functionality.

In order to detect different traffic signs, unique features
of each traffic sign have to be identified. Fig. 1(a) shows
several different traffic signs which need to be classified. We
define a unique feature as a coherent area with one dominant
color. Based on these results, thresholds for each color are
determined. Since timing constraints have to be considered, the
system is not able to analyze every pixel by itself. Therefore,
subsampling with eight horizontal pixel is performed which
also results in a low-pass filter for the respective pixel block.
As seen in Fig. 1(a), the red color feature can be applied to
speed limit traffic signs. The feature for the “limits no longer
apply” traffic sign is the numerous transitions between black
and white pixel. These transitions also results in gray pixel
directly at the edges of these transitions. Therefore, the features

TABLE 1. Y C,Cy THRESHOLD VALUES FOR THE COLORS RED, BLUE,

YELLOW, BLACK, GRAY, AND WHITE
Color || Yio | Yhi | Coio | Coni | Crio | Crohi
red 30 | 180 85 130 140 255
blue 30 | 155 85 130 140 255
yellow 90 | 255 30 84 145 180

TMDS|

Fig. 2. Modified HDMI-IN-IP core with integrated color thresholding and
feature detection

which result in the detection of this traffic sign are black-white,
white-black, black-gray, and gray-black color transitions. For
the last presented traffic sign in Fig. 1(a), the feature is similar
to the “limits no longer apply” traffic sign. Here, the blue-
white transitions within the image have to be considered since
only blue pixel might also resemble the sky. The detection
results for each color feature applied to the respective signs is
presented in Fig. 1(b). It can be clearly seen that all feature
are able to produce coherent areas which make a unique
classification possible. The blue sign is the only one which
does not result in a complete coherent feature, since some blue-
white transitions are embedded in a large blue field. In order
to decrease the fragmentation of the feature, 16 horizontal
pixel block can be used. Based on the analysis of several
traffic sign images and the resulting coherent feature areas,
the following thresholds are defined as seen in Table 1. The
table shows that the conversion from the RGB to the Y C,C,
color space has reduced the luma dependency for colors. The
colors red, blue, and yellow are valid through almost all values
of the Y component, but have no common threshold values
when considering the C}, and C,. components combined. In the
Y Cy,C,. color space, values are considered to be colorless when
the values of C} and C). are in the region of 128. Therefore,
the colors black, gray, and white do not have an overlap in
the Y component but have almost the same value range for
Cy and C,.. Still, in order to robustly detect the correct color,
all color space components have to be analyzed. The goal for
determining these thresholds was to cover all color values in a
certain range. Since the Y C},C). color space does not eliminate
all the influence the luminance has on the colors, different
colors might appear when considering the threshold borders.

All the above mentioned steps such as down sampling,
color conversion, and thresholding have to be implemented
into the HDMI-IN-IP core. The components of the modified
HDMI-IN-IP core are shown in Fig. 2. The raw TMDS data
is converted into RGB values by the "TMDS Decode” block.
The RGB values are then analyzed and based on that analysis,

relative postion

192

Twilight

128 W

64 Night

[1

0

Fig. 3. Y values for the traffic sign “limits no longer apply”.

color correction is performed in order to equalize the color
values to the available value range. After color correction, the
RBG data is converted into Y C,C, values which are then
sent to the Thresholding units, depicted as THq;0 in Fig. 2.
After thresholding is performed, the color detection for each
pixel is directly sent to the VFBC driver. Additionally, the
colors yellow and red are sent to the down sampling unit (DS)
since these color correspond directly to traffic sign features.
This cannot be done for the others colors since the features
are transitions between the respective colors. Therefore, an
edge detection (ED) is executed before sending the respective
pixel to the DS unit. As the DS unit requires 8 pixel for the
feature calculation, a sample and hold unit (S & H) is needed
to synchronously forward the correct value of every DS unit at
the same time. The output generated from the DS units are the
input values for the select unit. The select unit verifies if one
feature exists in the current image and sends this information
to the VFBC driver as well. The VFBC driver will then transfer
the pixel information to the RAM. The Microblaze is able to
access this information in the RAM and perform the traffic sign
classification. The following subsections will describe each
hardware components in more detail.

A. Color Analysis and Color Correction

The colors white, black and gray are identified by having
their C, and C, values around 128. Thus, ¥ > 200 is
white, 91 < Y < 200 is gray, and Y < 91 is black. As
already expressed in section I, our detection system should
be robust when confronted with varying lighting conditions.
The first step is to split the colors and the luminance into
different parameters. This is done through the transformation
from the RGB to the Y C,C,. color space. However, it is also
difficult to distinguish black, white, and gray under different
lighting conditions, as seen in Fig. 3. Here, the different Y
values are shown when traversing the “no limits apply” traffic
sign. During the day, Y has the largest range between white
and black. However, the Y value of white during the night
is even smaller than the Y value of black during the day.
This makes, traffic sign detection and classification almost
impossible. Therefore, a color analysis and color correction
unit have been implemented before converting from the RGB
to the Y Cy,C'. color space. The goal for both units is to perform
an automatic white balance of each frame. This is usually
done with histogram analysis. It is assumed that 99.9% of all
pixel of a frame occupy the complete RGB color space. These
0.1% pixel have to be set to the minimum or maximum value
of the color space. For this, two threshold values have to be
defined for each color component for the color correction. The
threshold is calculated through a count-margin unit, which is
depicted in Fig. 4. Since RGB values range from 0 to 255,

threshold
pxI
new_frame

Fig. 4. Architecture of the count-margin unit

DSP
pxlin {8 168 108 108 | 100
. i
gain 7= + PXlcorrect
bias {2 -

Fig. 5. Architecture of the color correction unit

8 bits are needed to compare the pixel value with a threshold
value. Then, all pixel are counted which fall above or below the
respective threshold. Only 0.05% of the pixel are allowed to
be in either the lower or upper threshold register. One FullHD
image contains 1920 x 1080 = 2.073.600 pixel. Therefore in
the worst case, a memory with a 22 bit width is required. When
the a new image frame arrives, the amount of pixel will be
reseted and the number of pixel above and below the respective
thresholds will be sent to the Microblaze via the PLB. The
Microblaze will then recalculate the thresholds based on the
current results from each count-margin unit. Additionally, the
Microblaze also calculates the gain and bias which is required
for the color correction unit with the equations in (2) and (3).

B 256
- bound,, — bound;o

(@)

bias = bound; ey, - gain 3)

gain

The color correction function implements equation (4) and is
shown in Fig.5.

pxlcm'rect - pxlin . gazn — bias (4)

The signal pxl;, is a 8 bit value and is multiplied with gain

calculated by the Microblaze. The Microblaze calculates the
gain and the bias with 8 pre-decimal point positions and
8 decimal places, in the following represented as 8.8. The
multiplication result requires 24 bit in the format 16.8. The 7
most significant bits are discarded since the value of the gain
ranges between 1 and 2 and therefore the multiplication cannot
reach higher values than 511 resulting in a 9.8 format. The
adder calculates in the two’s complement format. Therefore,
an additional sign bit 0’ has to be appended to the output
of the multiplication resulting in an 10.8 format as input for
the adder unit. The bias has to be sign extended in order to
fit the input of the adder and converted to its negative two’s
complement representation for subtraction. The 10.8 result is
rounded down to 10.0 by ignoring the decimal places of the
subtractions result. The described operations can be efficiently
performed by one of the DSP48-slices of the SPARTAN-6.
Lastly, clipping to the range of values 0 to 255 has to be
performed on the subtraction’s result. The three possible cases
are input > 255, input < 0, and 0 < tnput < 255. Due to the
subtraction, negative values can occur as a result. Therefore,
the sign bit (Bit 9) and the overflow bit (Bit 8) are analyzed.
If one of these bits is set as ’1°, the negated value of the
sign bit will be set as an 8 bit vector output. Otherwise the
bits 7 to O are sent to the output. The whole color correction
unit synthesizes at 324,675 MHz and thus fulfills the speed
requirement for FullHD image processing.

9x
PXlout
o delayed

pXlout

Fig. 6. Architecture of the threshold unit

next_block

4

V
4
4
THou

Architecture of the down sampling and low-pass filter unit

Fig. 7.

B. Threshold Unit

After the color corrected RGB values have been converted
into the Y CyC,. color space, each 24 bit Y C,C,. value has to
be assigned to one of the respective colors. These upper and
lower thresholds can vary for different colors. The hardware
for one color threshold unit is depicted in Fig. 6. Each of
the pixels color space components will be compared to the
respective two threshold for the Y, C}, and C, parameter.
Then, the 6 results of the comparisons are inserted into a LUT
which functions as a 6-Input-AND. The results is then sent to
the next hardware unit directly to the VFBC driver. In order
to synchronously receive the results from the down sampling
and low-pass filter, the pxl,,,; signal to the VFBC driver block
has to be delayed by 9 clock cycles. This unit synthesizes at
502,513MHz and therefore meets the timing requirements for
FullHD video processing.

C. Down Sampling Unit

The down sampling unit also incorporates the low-pass
filter since they cannot be divided. As seen in Fig. 7, it
sums up 8 horizontal pixel of one color and determines if the
respective feature threshold has been reached. If the incoming
signal pzl;, is ’1°, the counter will be incremented. When 8
pixel have been processed, the counter will get reseted by the
next_block signal. A register stores the current counter value
before it is compared to the down sampling threshold T H ;.
This threshold is important for the robustness of the color
feature detection since a false threshold value might result in
multiple feature detections. In the case of 8 pixel, two or more
color features can be valid if the threshold value is chosen
poorly. Therefore, the threshold has to fulfill the following

requirement. Block si

THoup > = +1,)
with Block size being the number of horizontal pixels which
are used to determine the sampling threshold. This requirement

is valid for single color features, but does not hold for

ﬂ 1, edgeout
1

&
&

Fig. 8. Architecture of the edge detection unit
1
Pxlin 3 @—lmas_indicator
| FEILUT 1 select,
1select;
Fig. 9. Architecture of the select unit

color transition features such as black-white or blue-white
color features. Here, for a block size of 8 pixel at least 5
transitions have to be detected on the traffic sign. These 5
transitions would blur into a gray color in case of a black-white
feature. Therefore, these thresholds are fixed at a threshold
value of 1 or 2. Therefore, the select unit in subsection II-E
employs a priority based mutual exclusion when determining
the valid pixel feature. The down sampling threshold can be
changed via software if needed. This component synthesizes
at 330,142MHz.

D. Edge Detection Unit

Not all color features which are sent to the DS units
consist of one color but consist of a transition between two
colors. In an image, this is represented as an edge. Therefore,
edge detection has to be performed for the color features
black-white, black-gray, and blue-white. Fig. 8 shows the edge
detection component. The input bits from each color feature
are delayed for 2 clock cycles in order to analyze three pixel
at once. This is done to reliably detect a color transition
and represents a horizontal edge detection. All possible pixel
combinations are compared to each other and the output signal
edgey defines if an edge is detected or not. Since all pixel
combinations require 6 inputs and one output, this logic can
be synthesized as a LUT.

E. Select Unit

As seen in Fig. 9, the select component checks if one of the
input signals coming from the four different features is valid
i.e. has the value ’1’°. If more than one feature is valid, then
the select unit will choose the feature with the highest priority.
Since four features are available, a 2 bit priority encoder is
implemented with 2 LUTs.

FE Resource Usage

Table II shows the resource usage of the implemented
components on the Spartan-6 FPGA. Only 47% of all available
slices are used for this design. With a usage of only 14% of the
slice registers, the design is not very resource hungry in this
regard. When regarding the number of occupied slice LUTs,
30% is relatively high in comparison. This is because most of
the components can be easily designed without fully utilized

TABLE II. RESOURCE UTILIZATION OF THE TRAFFIC SIGN DETECTION

ON THE SPARTAN-6 FPGA

Resources H Used ‘ Available | Utilization
No. of occupied Slices || 3.260 6.822 47%
Slice Registers 7962 54.576 14%
Slice LUTs 8.244 | 27.288 30%
DSP48A 10 58 17%
BRAM 19 116 16%

LUTs. With further optimizations, this number can be reduced.
The resource consumption of 17% and 16% for DSP48 and
BRAM blocks respectively is acceptable, especially since the
Microblaze is also included in this design.

III. SOFTWARE FEATURE EXTRACTION

The task of the software feature extraction is to determine
coherent feature regions based on the extracted pixel infor-
mation. This is done with the flood algorithm [14]. Since the
positions of the detected objects are also of interest for further
image processing, the horizontal and vertical minimum and
maximum value of the respective feature region is also saved.
These values represent a bounding box and will be saved in
memory, as soon as the stack is empty. As already mentioned
in section ??, the first byte which is transferred to the DDR
memory is reserved for the flood algorithm. The algorithm
reads the first byte and determines, if the respective pixel has
a feature. This is represented by the byte value ’1’. If no
feature is detected for the pixel, the value is ’0’. The flood
algorithm now tries to detect objects out of regions of features.
If such a region qualifies as an object, the first byte of every
pixel in this region is assigned the respective object number
starting at ’2’. This makes the tracking of up to 253 objects
possible. In order to not always reach the maximum number of
detectable objects in an image, smaller objects and objects with
the wrong proportions will be discarded. This step is executed
with traffic sign classification step which is introduced in
section IV. Since the target frame rate is 60fps, the flood
algorithm for the complete image should be processed within a
fraction of the time slot of ¢4, = %Sec ~ 16.66msec. Since
accessing every pixel of a FullHD image requires too much
time, the image is divided into 8 x 8 pixel blocks. This results to
1920/8-1080,/8 = 32400 pixel which are analyzedby the flood
algorithm. Without optimizations, the flood algorithm requires
1,5 - ts1o¢ in an empty image. In order to reduce execution
time, horizontally as well as vertically only every even pixel
block is analyzed, resulting in only 25% of memory accesses
in an empty image and thus reducing the execution time of the
algorithm to 0,4 -4, in an empty image. Activating compiler
additional optimizations like saving variables in registers also
results in execution time reduction. With all optimizations, an
execution time of 0,3 - ¢4, is required for an empty image.

IV. TRAFFIC SIGN CLASSIFICATION

The previous steps determined objects of interest in an
image. Now, these object have assigned to the respective traffic
signs. Fortunately, the features of each traffic sign are unique
so that a preselection can take place.

(a) Checking if
the detected ob-
ject resembles a
circle

(b) Determining the rotation angle
of a speed limit sign. The three
starting positions are the upper
left, upper right, and lower right
corner of the bounding box.

Fig. 10. Steps in traffic sign classification

A. Red — Speed limit

As already mentioned in section III, objects with the wrong
proportions have to be discarded so that red cars or red
lights will be detected as potential traffic sign candidates.
Therefore, all objects consisting of more than 200 and less
than 10 pixel blocks are ignored.Furthermore, objects where
the width/height is larger than the double height/width are
also ignored since these object are likely too distorted to be
analyzed and classified correctly. In section III, a bounding
box was saved in memory for each object. In order to extract
detailed information about the content of the traffic sign, the
white inner part has to separated from the red outer part.
This is done with two ellipses which are drawn inside the
respective bounding box. An ellipse inside a rectangle with the
dimensions 2a - 2b can be described with the two equations

x=a-cos(a)

y="b-sin(a). ©
The generation of two ellipses inside one bounding box is
executed by multiplying the x and y coordinates with either
the scale factor 1,08 or 0,95. 12 points of each ellipse will
be calculated and analyzed further. Figure 10(a) shows the
resulting two ellipses inside the speed limit traffic sign. The
corresponding pixel to the 12 points which belong to the outer
ellipse should all be red. The pixel belonging to the inner
ellipse should have a non-red color. However, small deviations
are acceptable so that the threshold for non-red color currently
has been set to 83%. The scale factors have been chosen
based on several measurements with traffic signs with different
orientations. The critical information of the speed limit sign
is still inside the white region. Therefore, a more accurate
bounding box is calculated for the white region of the traffic
sign. This is done by jumping 25% of the edge length into
the white region and traversing to the outer region pixel by
pixel until a red pixel is reached. Starting points for these
four jumps are the middle of the respective bounding box
edges. Now, the various digits have to be detected in the more
accurate bounding box. One of the challenges is the different
appearances of speed limit traffic signs such as compressed,
shifted, or rotated digits These various traffic signs can be
detected by first determining the rotation, number, and type
of digits. The angle of the digit rotation can be determined
by searching for the first black pixel inside the bounding box
with three different starting points. The process of determining
the angle is shown in Fig. 10(b). The three starting points are
depicted as | for the upper corners and 1 for the remaining
lower right corner. For each starting point, the bounding box
is analyzed column wise until the first black pixel of the

Proportion

Fig. 11. The binary decision tree for digit detection. The depicted pixel
positions will be examined. If a black pixel is detected at the respective
position, the path with 4/ is followed.

respective column is found. The position of the black pixel is
defined as the distance to the upper part of the bounding box.
This procedure is done until the distance increases again. The
last pixel position is then considered to be the highest pixel of
the digit. For the other two remaining starting positions, this
is done analogous. Both upper points describe a line which
intersects with one border of the bounding box. This angle
resembles the rotation of the digits. With this angle, a rectangle
which is aligned to the digits can be defined and is used
for the following digit detection. The maximum number of
digits which can occur on a traffic sign is 3. Between each
digit, there must be at least one column with non-black pixel
followed by a columns with black pixel. This *white’ column
then resembles the start of the next digit if the maximum
number of digits is not exceeded. If that is the case, this
information is ignored. In these boundaries, digit detection is
performed. The digit detection follows a binary decision tree,
depicted in Fig. 11 The first step is to check the proportion
of the digit. If it is much taller than it is wide, the digit is
detected as ’1’. Otherwise, the pixels will be examined at the
positions defined in the respective nodes of the tree. If a pixel
is detected as black at the specified position, then path with /
is followed. When a non-black pixel is present at the position,
the other path is followed. For the first and last digit, not all
paths have to be checked, since the available digits are very
limited. For instance, the first digit can only be a ’1°, while
the last digit usually either is a 0’ or a ’5’. In these cases,
the number of comparisons can be reduced significantly. As
a whole, the complete traffic sign classification requires not
more than 6% - t,,; which fully meets the requirements of the
system.

V. CONCLUSION

This paper introduces an efficient traffic sign detection as
driver assistance system. The complete system was designed
and implemented on a Spartan-6-FPGA with the requirement
to be able to process FullHD video streams. A great advantage
of a FPGA compared to a general purpose processor is the
focus and optimization on one task. This enables the reduction
of memory accesses when converting an image from one color
space to another since these conversion can be performed on
the data stream. Additionally, FPGAs, especially the Spartan-
6 since it is approved for the automotive domain, provide

a low cost solution for designing and implementing future
ADAS which is very important in the automotive domain.
The methods which were developed in this paper aim to
enable the autonomous driving but can also be adapted to
other autonomous robotic applications such as health care,
agriculture, and space exploration. In these cases, the features
just have to defined differently and the classification needs to
be adapted. While the performance of the designed system
is satisfactory, several extensions have to be implemented for
an actual field test in automobiles. The system design also
allows the detection of other objects for future projects and
applications.

ACKNOWLEDGMENT

This research has been supported by the Horizon 2020
grant for RADIO, Project Number 643892.

REFERENCES

[1] G. Stein, E. Rushinek, G. Hayun, and A. Shashua, “A computer vision
system on a chip: a case study from the automotive domain,” in
Computer Vision and Pattern Recognition - Workshops, 2005. CVPR
Workshops. IEEE Computer Society Conference on, June 2005, pp. 130—
130.

[2] M. Newsletter, “Moving closer to automated driving, mobileye unveils
eyeq4 system-on-chip with its first design win for 2018,” online,
Mobileye Vision Technologies Ltd., Mar. 2015. [Online]. Avail-
able: www.mobileye.com/blog/press-room/moving-closer-automated-
driving-mobileye-unveils-eyeq4-system-chip-first-design-win-2018/

[3] M. Miiller, A. Braun, J. Gerlach, W. Rosenstiel, D. Nienhuser, J. Zollner,
and O. Bringmann, “Design of an automotive traffic sign recognition
system targeting a multi-core soc implementation,” in Design, Automa-
tion Test in Europe Conference Exhibition (DATE), 2010, March 2010,
pp. 532-537.

[4] S. Waite and E. Oruklu, “Fpga-based traffic sign recognition for
advanced driver assistance systems,” Journal of Transportation Tech-
nologies, vol. 3, no. 1, pp. 1-12, Jan. 2013.

[S] Y. Han and E. Oruklu, “Real-time traffic sign recognition based on
zynq fpga and arm socs,” in Electro/Information Technology (EIT), 2014
IEEE International Conference on, June 2014, pp. 373-376.

[6] Atlys Board Reference Manual, Digilent Inc., 1300 Henley
Court, Pullman, WA 99163, Aug. 2013. [Online]. Available:
www.digilentinc.com/data/products/atlys/atlys_rm_v2.pdf

[71 XA Spartan-6 Automotive FPGA Family Overview, Xilinx Inc., Dec.
2012. [Online]. Available: www.xilinx.com /support/documentation/-
data_sheets/ds170.pdf

[8]1 LogiCORE IP Processor Local Bus (PLB) v4.6 (vi.05a),
Xilinx Inc., Sep. 2010. [Online]. Available: www.xilinx.com
/support/documentation/ip_documentation/plb_v46.pdf

[91 LogiCORE IP Local Memory Bus (LMB) v3.0, Xilinx Inc.,
Mar. 2013. [Online]. Available: www.xilinx.com /support/documenta-
tion/ip_documentation/lmb_v10/v3_0/pg113-Imb-v10.pdf

[10] B. Feng, “Implementing a tmds video interface in the
spartan-6 fpga,” Xilinx Inc., Tech. Rep., Dec. 2010.
[Online]. Available: www.xilinx.com /support/documentation/appli-
cation_notes/xapp495_S6TMDS_Video_Interface.pdf

[11] D. Phanthavong and J. Ou, “Implementing a video frame
buffer controller (vfbc) in system generator,” Xilinx Inc.,
Tech. Rep., Jun. 2009. [Online]. Available: www.xilinx.com

/support/documentation/application_notes/xapp1136.pdf

[12] LogiCORE IP Multi-Port Memory Controller (MPMC) (v.6.03.a),
Xilinx Inc., Mar. 2011. [Online]. Available: www.xilinx.com
/support/documentation/ip_documentation/mpmec.pdf

[13] W. K. Pratt, Digital Image Processing, 3rd ed. John Wiley& Sons,
Inc., 2001, ch. 3, pp. 45-88.

[14] R. Khudeev, “A new flood-fill algorithm for closed contour,” in Control
and Communications, 2005. SIBCON ’05. IEEE International Siberian
Conference on, Oct 2005, pp. 172-176.

