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Abstract— Robotics combines a lot of different domains with 

sophisticated challenges such as computer vision, motion control 
and search algorithms. Search algorithms can be applied to 
calculate movements. The A* algorithm is a well-known and 
proved search algorithm to find a path within a graph. This 
paper presents an extended A* algorithm that is optimized for 
robot navigation using a bird’s eye view as a map that is 
dynamically generated by image stitching. The scenario is a robot 
that moves to a target in an environment containing obstacles. 
The robot is controlled by a Xilinx Zynq platform that contains 
an ARM processor and an FPGA. In order to exploit the 
flexibility of such an architecture, the FPGA is used to execute 
the most compute-intensive task of the extended A* algorithm. 
This task is responsible for sorting the accessible nodes in the 
graph. Several environments with different complexity levels are 
used to evaluate the extended A* algorithm. The environment is 
captured by a Kinect sensor located directly on the robot. In 
order to dewarp the robot’s view, the frames are transformed to 
a bird’s eye view. In addition, a wider viewing range is achieved 
by image stitching. The evaluation of the extended A* algorithm 
shows a significant improvement in terms of memory utilization. 
Accordingly, this algorithm is especially practicable for 
embedded systems since they have often only limited memory 
resources. Moreover, the overall execution time for several use 
cases is reduced up to a speed-up of 2.88x. 
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I.  INTRODUCTION 

The research area of autonomous robots yields an 
enormous number of sophisticated challenges. However, this 
technology holds a lot of promising capabilities for a wide 
variety of applications nowadays. The applications cross a lot 
of different domains. For instance, robots can be deployed in 
hazardous situations instead of humans. They can search for 
victims in a disaster such as a house collapse [1]. Also robots 
are often applied in ambient assisted living environments. For 
example in the RADIO project [2] a robot connected with a 
smart home environment is presented for an unobtrusive 
observation of elderly people. This robot analyzes the health 
conditions of the elderly and provides an intelligent and 
autonomous help. 

In most robotics applications, the robot has the challenges 
to localize itself in an unknown environment and navigate to a 
destination without collisions. The interaction with the 

environment requires several sensors. However, to reduce 
costs, weight and energy consumption, the number of installed 
sensors on the robot should be as low as possible. Cameras are 
often applied to sense the environment. The image data 
captured from the camera can be used for localization of the 
robot.  

In order to navigate from a robot’s start position to a 
destination, a graph representation of the environment can be 
used. In order to obtain this representation, a transformation of 
the camera view is necessary. Graphs are extensively studied 
for a long time. Hence, approved search algorithms are 
deployed for path planning. In case of a large search space, the 
search algorithm can require high memory resources and must 
provide high performance at the same time. In addition, an 
autonomous robot is often driven by accumulators. Therefore, 
the power requirements are highly restricted. Accordingly, a 
high performance-capable computer with low power 
consumption must be utilized. An embedded system optimized 
for specific applications can deal with these demands. In this 
paper, a combination of dynamic image stitching for a bird’s 
eye view and an extended A* algorithm is applied to robotics. 
The main contributions of this paper are listed below. 

 Autonomous Robotics. The work presented in this 
paper is evaluated by a challenging robotics 
application. A robot has to navigate autonomously 
to a destination in an environment containing 
obstacles. The robot is controlled by a Xilinx Zynq 
platform that contains an ARM processor and an 
FPGA. The Zynq processor provides a flexible 
system for accelerating compute-intensive tasks on 
the  FPGA. 

 Usage of several image processing algorithms for 
self-localization. A bird’s eye view transformation 
is conducted to generate a map for path planning. 
This map simplifies the path planning, obstacle 
and destination detection. Furthermore, a dynamic 
image stitching algorithm is applied using a single 
Kinect sensor. Additional sensors are not needed.  

 An extended A* algorithm. In order to plan 
efficiently a path without collisions, the A* 
algorithm is improved by reducing the size of the 
search space and the memory utilization. The 
algorithm is further optimized for robot 
navigation, by considering also the size of the 



robot for the path planning. As a consequence, this 
extended A* algorithm provides better 
performance and memory utilization. Furthermore, 
compute-intensive tasks are executed on the 
FPGA. The results of this hardware/software 
codesign are compared against a pure software 
solution on the ARM processor. 

This paper is organized as follows: Section II introduces 
related work. In Section III the experimental setup with its 
challenges for the robot navigation is explained. Afterwards, 
the extended A* algorithm is described in Section IV. Section 
V presents the evaluation of the complete system. Finally, the 
conclusion and an outlook are given by section VI. 

II. RELATED WORK  

In robot navigation, several challenges have to be coped. 
An autonomous mobile robot must localize itself in an 
unknown environment. In addition, it has to determine the 
destination for navigation. Accordingly, the robot is equipped 
with several sensors. In a lot of cases, a camera acquires 
images of the environment. These images can be used to build 
a map for path planning. A bird’s eye view of the robot 
simplifies the localization and map building. A wide variety of 
image processing algorithms is extensively investigated and is 
applied in robotics.  

In [3], M. Jia et al. present obstacle detection in stereo 
bird’s eye view images for robot navigation. In order to obtain 
the bird’s eye view, a camera system is located at the ceiling of 
the room. This enables a bird’s eye view for indoor navigation 
of the robot. However, in our approach, the camera is located 
directly on the robot As a consequence, a transformation is 
necessary for the bird’s eye view, but, our approach is 
independent from the environment and does not require a 
specific camera setup in the room. Accordingly, it is not 
limited to indoor localization.  

Another work regarding robot localization using a bird’s 
eye view is presented in [4] by J. Y. Mori et al. An 
omnidirectional camera is utilized to capture an image. This 
image presents the complete environment surrounding the 
robot. Based on this image, the robot localizes itself. The 
omnidirectional camera has the advantage of a view around the 
entire robot using only one camera.  

In [5], the image of an omnidirectional camera is 
investigated to distinguish between obstacles and free space by 
means of a machine learning algorithm. A bird’s eye view 
transformation enables comparison with local occupancy maps. 

 N. Winter et al. [6] present a robot navigation with visual 
path planning based on an omnidirectional camera. The 
transformation of the omnidirectional images into a bird’s eye 
view corresponds to scaled orthographic views of the ground 
plan. In contrast, our paper presents an approach without the 
need of an expensive and complex camera system. The robot 
uses a Kinect that captures images at different angles. These 
images are stitched to a single image. Digital maps and satellite 
photos have been built using image stitching algorithms for 
decades [7]. Several image stitching algorithms have been 

developed as in [8], [9] and [10]. The algorithm used in this 
paper is similar to the algorithm in [11]. 

A multitude of algorithms have been studied extensively 
and evolved to overcome the challenge of path planning in 
robotics over the last years. A well-known algorithm is the 
Dijkstra algorithm. The Dijkstra algorithm determines the 
shortest path from a source to a destination node in a graph. In 
contrast to the extended A* algorithm, Dijkstra algorithm 
deploys an uninformed search. This means that no information 
is given about the location of the destination. The extended A* 
algorithm involves the position of the destination. Accordingly, 
it belongs to the informed searches. They can provide better 
performance compared to uninformed searches.  

An advancement of the Dijkstra algorithm is the original 
A* algorithm [12]. It reduces the size of the search space due to 
a heuristic. As a result, the memory resources can be decreased. 
The extended A* algorithm carries out the same approach and 
tries to further reduce the memory resources. Another 
algorithm that optimizes the A* algorithm is the dynamic A* 
algorithm (D*) [13]. An advantage of this algorithm is that it 
can reschedule a path when new information about the 
environment is discovered. The path is repaired incrementally 
depending on the robot’s state. The Field D* algorithm [14] 
completes this approach. Dynamic changes of the environment 
also influence the costs between two points that a robot can 
traverse. NASA’s curiosity rover navigates autonomously 
through the rocky terrain of Mars using the Field D* algorithm. 
The D* Lite algorithm [15] is also an incremental search as D* 
or Field D*. It uses heuristics to plan a path and reuse 
information from previous searches.  

Firstly, the search algorithm presented in this paper plans 
the path before the robot starts to move Afterwards, the robot 
navigates along the path. Dynamic changes of the environment 
causes a recalculation of the path with the extended A* 
algorithm. In this manner, the extended A* algorithm can also 
reschedule the path. In addition, the processor needs only a 
single completion of the search algorithm in best case.  

A similar approach is developed by H. Liu et al. in [16]. 
The robot navigation is performed by a hybrid path planning 
strategy. This strategy plans the path offline with an algorithm 
called Floyd [17]. In contrast to the extended A* algorithm, a 
Dijkstra algorithm is executed to select an alternative path 
when the original calculated path is not available during 
navigation. However, the extended A* algorithm provides a 
better memory utilization as mentioned.   

III. EXPERIMENTAL SETUP & CHALLENGES 

In order to show the benefits of the combination from the 
extended A* algorithm and image processing, a robot 
application is used as evaluation. The robot is a turtlebot using 
a Kinect sensor as shown in Fig. 1. The color camera from the 
Kinect sensor is utilized to capture images from the 
environment. Indeed, a Kinect sensor is not stringently 
required. It can also be exchanged with another camera. 



 

Fig. 1: Robot platform to evaluate the algorithm presented in this 
paper 

 

Further sensors of the Kinect sensor are not deployed in this 
work. However, the number of different Kinect sensors 
provides a good basis for future work. 

In this work, the robot is controlled by a Zedboard. The 
Zedboard contains a Xilinx Zynq chip that has a dual cortex-
A9 ARM processor running at 667 MHz. Furthermore, the 
Zynq chip has a programmable logic that is located besides the 
ARM processor.  

Contrary to a common computer, an advantage of the 
Zedboard is the lower power consumption. In addition, the 
heterogeneous architecture of the Zynq chip provides a flexible 
system for robot application.  

The robot is located in an environment consisting of a 
single target and several obstacles. The robot plans 
autonomously a path from its start position to the destination. 
Afterwards, the robot navigates to the destination. 

In order to find a path, search algorithms such as an A* 
algorithm can be applied. These algorithms require a search 
space presented in a graph structure in order to determine the 
path. The search space can be constructed using the color 
image from the Kinect sensor. For that reason, the Kinect 
sensor captures the environment from the robot’s view. 
However, a search algorithm expects another view of the 
environment. Therefore, the frames are transformed to a bird’s 
eye view. Another problem is the restricted view of the robot. 
The robot uses a single Kinect sensor that has a limited 
viewing range. Hence, the viewing range has to be extended to 
detect targets at a wider spot. To achieve this, a stitching 
algorithm is used. 

IV. EXTENDED A* ALGORITHM 

A lot of applications are existing that try to find a best 
solution among multiples. The search space is spanned by 
states of the application.  
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Fig. 2: Graph consisting of a source node 1(two dotted circles), a 
destination node 4 (two circles, walkable nodes in white and 

impassable nodes in grey 
 

In this work, the focus is on path planning for a robot. 
Therefore, an image that presents the environment will be 
analyzed to find a solution from a start to an end position. The 
image consists of pixels which forms the search space as a 
graph. 

A. Introduction to A* Algorithm 

An example of a graph presentation for path planning is 
given by Fig. 2. A graph contains a set V of nodes and a set E  
of edges linking the nodes. In case of the robot application, 
each node represents a pixel captured from the environment. 

),( EV 

In this work, only undirected graphs are investigated. 
Generally, the nodes are numbered from 1 to n.  

}...,,2,1{ nV  

In Fig. 2, 16 nodes are depicted. An edge   connects two 
nodes i and j. The number of the nodes can be used to specify 
the edge. 

 Vjiji  ,),,( 

 Every edge (i, j) has a value ci,j that determines the cost 
between the nodes linked by the respective edge. In this paper, 
the cost ci,j is defined by the distance between nodes. All these 
costs ci,j are equal since the distance between neighboring 
pixels is also assumed as identical. A path P from node A to 
node B can be determined by a series of edges. The end node 
of every edge is equivalent to the start node of the following 
edge.   
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B. Sequence of A* Algorithm 

In order to find a path from a source node to a destination 
node, algorithms such as A* can be applied. A* algorithm is an 
extension of the Dijkstra algorithm. Similar as the Dijkstra 



algorithm, the A* algorithm finds the path with lowest costs, if 
a path exists. Contrary to Dijkstra, the A* algorithm conducts 
the path planning with a heuristic that provides better 
performance. 

The flow of the A* algorithm is explained by an example 
depicted in Fig. 2. Nodes highlighted in gray are obstacles and 
cannot be used to find a path. The task is to find a path P(1,4) 
from node 1 to node 4 without passing the gray nodes. In order 
to perform the algorithm, an open list Lo for nodes that have to 
be investigated and a closed list Lc for nodes that are already 
investigated are defined. Initially, both lists are empty. 

Lo V                 (5) 
Lc V                 (6) 

The first step of the A* algorithm is to put the start node 
into Lo. In case of the example, node 1 is sorted into Lo while 
Lc is empty.  

  Lo={1}                                           (7) 
  Lc={}                                            (8) 

Afterwards, the A* algorithm takes the first node from Lo. 
Since only node 1 is in Lo, this node becomes active and will 
be investigated in the next step. Thereby, neighboring nodes 
that are directly connected by an edge to the active node are 
sorted into Lo. In Fig. 2, node 2 and 5 are linked by edges (1, 2) 
and (1, 5) to node 1. In order to organize the list Lo, the A* 
algorithm calculates the cost f() for every neighboring node 
. The node with the least costs f() is at the first position of 
Lo. The remaining nodes are sorted in decreasing order. The 
cost f() are composed by the addition of the costs g() and 
h().  

f()=g()+h()                                    (9) 

The function g() is the sum of the costs ci,j of all previous 
edges from the start node to node . If the costs ci,j represents 
the distance, the function g() is the distance from the start 
node to node . In contrast to this, function h() is a heuristic 
to predict the costs from node  to the end node. Hence, the 
algorithm needs information about the location of the end node. 
Since the position of the end node is given by the undirected 
graph, a heuristic can be used to estimate the costs from a node 
to the end node. In this paper, the Manhattan distance is 
utilized as the heuristic h(). This function adds the costs of 
every horizontal and vertical edge from node  to the end 
node. Thereby, the minimal path cost is calculated without the 
inclusion of obstacles.  

This organization of the list Lo assures that the most 
promising node is investigated first. Since f(5) = 5 and f(2) = 3, 
Lo is ordered as in Equation (10). Node 1 is closed and is 
moved to list Lc.  

  Lo={2, 5}                                       (10) 
  Lc={1}                                         (11) 

Afterwards, the steps are repeated.  The first node of Lo is 
node 2. The algorithm analyzes the available edges from node 
2. The edge (2, 3) points to an obstacle. That is why node 3 is 
ignored. Only node 6 with f(6)=5 is reachable and is sorted in 
Lo. Node 2 is moved to list Lc. 

TABLE I. A* PSEUDO CODE FOR ROBOT PATH PLANNING 

1: initialize the list Lo

2: initialize the list Lc 

3: start node = A 
4: end node = B 
5: sort_Lo(start node) 
4: while Lo is not empty 
5:    active node =  first_Lo 
6:   insert_Lc(active node)  
7:    find_neighbors(active_node)    
8:    for each neighbor   
9:         if neighbor = end node → stop search     
10:       if neighbor = gray →skip this neighbor 
11:       if neighbor is already in Lo →  
12:                if g(neighbor) < g(node in Lo ) → exchange 
13:       otherwise sort_Lo(neighbor) 
14:    end for 
15: end while

 
  Lo={6, 5}                                       (10) 

  Lc={1, 2}                                       (11) 

Node 6 is at the first position of Lo. Depending on the 
application, node 6 can also be listed after node 5 as both have 
the same costs f(). When a node directs to a node that is 
already in the list Lo, the costs g() from both nodes are 
compared.  

The node with lower costs g() is placed into the list Lo. 
This procedure is repeated until the end node is detected or the 
list Lo is empty. The latter case occurs when no path exists 
from start to end node. If a path is found, the A* algorithm 
using the Manhattan heuristic computes the minimal path. In 
order to construct the path, every node stores the source node 
that points to this node. When the end node is found, the path is 
constructed by retracing the source nodes. A pseudo code for 
the A* algorithm is shown in Table I. The A* algorithm has a 
time complexity of V²|assuming that the list Lo is 
implemented as a binary heap and list Lc as an array. 
Furthermore, the heuristic must be monotone. 

C.  Sequence of extended A* Algorithm 

As mentioned the A* algorithm finds an existing minimal 
path. Consequently, a robot using this algorithm is able to plan 
a path to its destination. However, the list Lo collects all nodes 
that construct the path to the destination and further nodes that 
are discarded later. Depending on the application, this list can 
contain a tremendous number of nodes. Line 13 of the pseudo 
code in Table I shows that each new node must be placed in list 
Lo. The new node has to be placed in order, since the algorithm 
uses the first node of Lo in every iteration. This organization is 
expensive in terms of computation time for a large list. There 
are several ways to optimize the organization by using more 
efficient sort algorithms. This paper follows another approach 
to reduce the computation time of the sorting. The extended A* 
algorithm keeps the list Lo small. Consequently, the 
computation time for sorting is reduced. In addition, this 
reduction is independent from the sorting algorithm. 
Furthermore, a large list can overload the system memory. In 
case of embedded systems, especially memory is a limited 
resource. Therefore, the list should be kept small to avoid 
system problems. Assuming the A* algorithm searches for new 



nodes as it is written in line 7 in Table I, the new node will be 
sorted in list Lo when the following criteria are satisfied. 

1. End node. The new node is not the end node. If it 
would be the end node, a path is found. As a result, the 
algorithm terminates. 

2. Permitted node. The new node is not a permitted node. 
This is a criterion given by the robot application. A 
node highlighted gray in the graph is equivalent to an 
obstacle. Hence, it cannot be included in the final path. 

This paper extends the A* algorithm with a further criterion 
that minimizes the list length. The new criterion is called 
Memory Criterion. 

3. Memory Criterion. A new node is only added to the list 
Lo when nodes in a defined distance d are not gray.  

This criterion ensures that not only the neighbor node is 
analyzed. A distance d specified in number of nodes is defined. 
If at least one node that is d nodes away from the neighbor 
node is gray, the neighbor node is not inserted into the list Lo. 
Thus, the list size is more constrained and according to this, the 
number of nodes is reduced. In case of the robot application, 
this criterion does not exclude possible paths for the robot. The 
robot has a width given by its dimension which can be used to 
define the distance d. This distance can be considered as a 
safety distance to avoid collision with an obstacle. As a result, 
the memory criterion improves the memory utilization and 
additionally, it has practical reasons. Furthermore, a neighbor 
node that is already in Lo will be excluded from the list. This 
reduces further the memory resources. Assuming that the map 
has a large size as it is often the case and including the robot 
size, this exclusion has no significant impact on the success of 
the robot navigation. Table II shows the pseudo code of the 
extended A* algorithm. The memory criterion is located in line 
10. The second criterion is written in line 11. This line is still 
necessary, since gray nodes that are located in a range smaller 
than the distance d after the start-up of the application can be 
inserted into the list Lo without this criterion. Another way to 
avoid a high number of nodes inside the list is to cluster nodes. 
Afterwards, these clusters are the new elements of the list. 
However, this approach is not comparable with the extended 
A* algorithm. The resolution decreases as well as the number 
of elements. The extended A* algorithm keeps the resolution 
while decreasing the number of nodes inside the list. 

V. ROBOT PATHPLANNING  

As mentioned, the extended A* algorithm is implemented 
for path planning of a robot. The code is written in C++ and the 
Zedboard is equipped with a Linaro operating system since 
Linaro provides device drivers for several peripherals. Images 
of the environment are acquired with the Kinect sensor that is 
accessible by the OpenNI 2.0 drivers. Three experimental 
setups consisting of a target and multiple obstacles are 
constructed for evaluation. In order to distinguish between 
target and obstacles, the algorithms analyzes the color of the 
objects. The color of targets is defined as green. The color 
purple is used for obstacles.  

TABLE II. EXTENDED A* PSEUDO CODE FOR ROBOT PATH PLANNING 

1: initialize the list Lo

2: initialize the list Lc 

3: start node = A 
4: end node = B 
5: sort_Lo(start node) 
4: while Lo is not empty 
5:    active node =  first_Lo 
6:    insert_Lc(active node)  
7:    find_neighbors(active_node)    
8:    for each neighbor   
9:         if neighbor = end node → stop search     
10:       if neighbor doesn’t satisfy Memory Criterion → skip    
            this neighbor 
11:       if neighbor = gray →skip this neighbor 
12:       if neighbor is already in Lo →  
13:                delete neighbor 
14:       otherwise sort_Lo(neighbor) 
15:    end for 
16: end while

 The entire software implemented on the Zedboard consists 
of two main components. 

1. The image processing of frames includes among others 
the image stitching and bird’s eye view transformation. 
This is needed for further processing. The functions 
used for image processing are based on the OpenCV 
2.4.11 library. 

2. The navigation of the robot using the extended A* 
algorithm and the control of the robot. The control of 
the robot performs the navigation based on the path 
planned by the extended A* algorithm for robotics. 

A. Image Processing of Frames 

The Kinect sensor acquires images from the environment. 
However, the viewing range of the Kinect sensor is limited. 
Hence, it is not possible to transform these images to an entire 
bird’s eye view based on a 360° view. If the robot does not find 
the destination, it assumes that the destination is not in the 
viewing range of the Kinect sensor. In order to increase this 
viewing range, the robot rotates at 45° and captures five times a 
single image at different angles. These images extend the view 
of the robot since it scans the environment. In this paper, the 
robot uses dynamically the stitching algorithm. This adaptive 
behavior optimizes the performance of the system since image 
stitching has high computational costs in terms of performance 
as shown in Section V. 
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Fig. 3: A graph based on the binary image 
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Fig. 4 Algorithms chain of the implemented robot navigation 
 

Multiple images captured during the scan process are joined 
to a single image for a bird’s eye view transformation using the 
stitching algorithm. In this work, the number of images for 
stitching is configurable. As a consequence, the execution time 
of the stitching algorithm depends on the number of images 
that has to be joined and can be configured to the application-
specific requirements. The main parts of the stitching algorithm 
are finding the features within the images, matching the 
features of the images and determine the homography matrix to 
transform the images for blending them. The image resulting 
from this algorithm is transformed in a top down bird’s eye 
view. In order to perform the bird’s eye view transformation, 
corner points of a trapezoid are defined inside the image. These 
points are the corner points of the bird’s eye view and are 
configured by the programmer. The distortion correction is 
indicated by the corner points in the image. By means of these 
points, the homography matrix is calculated to transform the 
image in a top down bird’s eye view. The transformation 
dewarps the image captured by the robot and accordingly, it 
enables a simpler calculation of the robot movements. Each 
pixel of the image represents a node for the A* algorithm. The 
pixels are captured in RGB format. Obstacles and destination 
are detected by analyzing the color of the pixels. Since color 
recognition is sensitive to changing lighting conditions, the 
image is converted to HSV color space. An HSV color space 
provides more robust obstacle detection. Thus, the robot 
distinguishes between nodes that belong to an obstacle and 
those, which are walkable. For that reason, the image is 
converted to a binary image. Each binary pixel is either a node 
of an obstacle or a walkable node for the robot. Moreover, the 
use of a binary image reduces the memory resources.  

B. Robot Navigation using the Extended A* Algorithm 

The nodes of the graph that has to be analyzed are 
represented by the pixels of the binary image. In this work, the 
nodes are linked. In addition to the horizontal and vertical 
links, the nodes have diagonal links. This increases the search 
space for the robot. 

However, it also increases the number of paths to the 
destination. The costs chv of the horizontal and vertical links are 
equal in contrast to the diagonal link cd. This link has a cost 
which is calculated by the Pythagorean Theorem. 

22
hvhvd ccc  

The binary image is analyzed by the extended A* algorithm 
described in Section IV. The maintenance of the open list is 
time-consuming, since it has to be sorted in each iteration. 

Therefore, the performance of the algorithm is influenced by 
the implementation of the open list. The open list is 
implemented with a binary heap structure. In case of a binary 
heap structure, only the node with the lowest cost is always 
selected as the new node for investigations. In other words, 
detailed information about the order of the entire list is not 
necessary. Thus, a binary heap structure is an efficient and 
useful implementation for the list in software. Furthermore, a 
binary heap and another implementation, hereafter referred to 
as HW sort, to sort the list have been implemented inside the 
FPGA. The ARM processor communicates via the General 
Purpose (GP) port to these hardware components. Both of them 
support four functions to clear the list, add a new element, 
remove an element and re-sort an element with new costs. 
These functions are necessary to build the A* algorithm. The 
binary heap from the software approach is synthesized with 
Vivado HLS 2014.4. The HW sort synthesized also with 
Vivado HLS adds an element to the list based on the incoming 
order. For removing an element, the whole list will be analyzed 
to find the element with the lowest costs. Afterwards, this 
element will be removed from the list. The function call to re-
sort the list updates nodes with their new costs.  

The robot navigates autonomously along a path determined 
by the A* while it monitors the environment with the Kinect 
sensor. Dynamic and relevant changes of the environment 
induce a new start of the program sequence. Obstacles that are 
occurring in front of the robot are relevant changes. In this 
case, the robot brakes immediately to avoid a collision. To sum 
up, the steps that are conducted in this work are illustrated in 
Fig. 4. 

VI. EVALUATION 

The implemented software on the ARM processor for 
controlling the robot and for robot navigation has a size of 51 
kB. Controlling the robot requires 6 kB of memory, while the 
robot navigation has a size of 45 kB. The first step of the robot 
navigation is image stitching. The image stitching algorithm 
implemented in this paper extends the view from 61.5° to 110°. 
Consequently, the view is expanded by a factor of 1.8 as shown 
in Table III. The image stitching function receives an array of 
input images and uses the SURF algorithm [18] to determine 
correlated points between the images. 

TABLE III. VIEW EXTENSION BY IMAGE STITCHING 

Original View Expanded View Improvement

61,5° 110° 1.8x



In case of five acquired images around the robot that are 
forwarded to the SURF algorithm, it has a failure rate of 40%. 
This means that the algorithm was not able to find common 
features for all five images. Accordingly, it is not possible to 
join the images. Since the measurements are varying, the 
number of measurements was set to 20. It assures reliable 
results.  An implemented modification of the image stitching 
function is that the SURF algorithm compares only two images 
at a time. The images that have to be combined are forwarded 
separately in pairs. This modification influences the 
performance and failure rate. Due to the separation in pairs, the 
performance is reduced by 0.09 % as presented in Table IV. 
However, the failure rate is decreased by the factor of 2. The 
results are listed in Table V. The degradation of performance is 
negligible in comparison to the improvement regarding the 
failure rates. The average execution time for the subsequent 
bird’s eye view transformation of a single frame is presented in 
Table VI. In order to analyze the extended A* algorithm, three 
experimental setups are used. Fig. 5 presents an abstract view 
of these setups. Setup A is the simplest. It contains no obstacles 
in contrast to setup B and C. Setup C has the highest 
complexity and most restrictions on the possible path to the 
target. The image size for the extended A* algorithm is 
640x480 pixels and resized down to 320x340 in the software. 
Fig. 6 presents a comparison between the classical A* and the 
extended A* algorithm running only in software. The 
execution time of the extended A* algorithm is up to 2.88x 
faster compared to the classical one. 

TABLE IV: GENERIC PERFORMANCE OF IMAGE STITCHING WITH AND 
WITHOUT MODIFICATION 

 No modification Modification 

Exec. time [sec.] 24,5 27 

TABLE V. FAILURE RATE OF IMAGE STITCHING WITH AND WITHOUT 
MODIFICATION 

 No modification modification

failure rate 40 % 20 %

TABLE VI: AVERAGE PERFORMANCE OF THE BIRD'S EYE VIEW 
TRANSFORMATION 

 Performance per 
frame [sec.] 

Video display in 
frames per seconds 

Bird’s Eye View 0.245 ≈4

TABLE VIII: RESOURCE UTILIZATION OF THE FPGA-BASED LISTS 
OBTAINED FROM VIVADO HLS 2014.4 

 LUTs FF BRAM_18K 

Binary Heap 2709 5706 3 

HW sort 12753 3401 3 

 The speedup is achieved due to the lower memory 
requirements. In Fig. 7 the maximum number of nodes inside 
the list is shown. The extended A* algorithm provides the 
smallest list. Therefore, the effort to sort this list is lower 
resulting in a better performance. The performance results of 
the different implementations for the extended A* algorithm 
are shown in Fig. 8. The A* algorithm with an FPGA-based 
binary heap for the open list shows the worst performance 
results. The structure of the binary heap cannot be efficiently 
implemented by Vivado HLS in an FPGA. Therefore, the HW 
sort for the open list has been implemented using VivadoHLS 
that shows a significant improvement in comparison to the 
FPGA-based binary heap. In case of no obstacles, this structure 
shows the best performance. The resource utilization of both 
FPGA-based lists running at 200 MHz is given by Table VIII. 

 
FIG. 5: EXPERIMENTAL SETUP TO ANALYZE DIFFERENT 
IMPLEMENTATIONS OF THE EXTENDED A* ALGORITHM 

A                                     B                                        C

 

FIG. 6: COMPARISON BETWEEN CLASSIC IMPLEMENTATION AND 
EXTENDED A* ALGORITHM 

 

FIG. 7: THE MAXIMUM NUMBER OF ELEMENTS FOR THE EXTENDED 
A* AND THE CLASSICAL IMPLEMENTATION 

 



FIG. 8: PERFORMANCE OF EXTENDED A* ALGORITHM USING NO 
HARDWARE, AN FPGA-BASED BINARY HEAP AND HW SORT 

 

 
 

VII. CONCLUSION & OUTLOOK 

In this paper, a robot navigation1 is presented using a 
combination of sophisticated image processing algorithms to 
generate a map and an extended A* algorithm to plan the path 
based. A turtlebot localizes itself in an environment containing 
several obstacles and a destination. Afterwards, it 
autonomously navigates to the destination. In order to generate 
a map, a Kinect sensor is used to scan the environment. If the 
robot cannot find the destination, it spins around and captures 
images at different angles. These images are joined to a single 
image with a wider angle using a stitching algorithm. The 
stitching avoids the usage of an expensive camera system. 
Afterwards, this image is transformed to a bird’s eye view 
providing a dewarped view of the robot in its environment. The 
map given by the bird’s eye view is analyzed by an extended 
A* search algorithm to determine a path to the destination. In 
contrast to the original A* algorithm, the number of nodes 
analyzed to plan the path is reduced by a maximum factor of 
5.55x in the use cases presented in this paper. Based on this 
reduction, the memory resources are optimized especially for 
embedded systems that have limited memory. In addition, the 
performance is increased by a maximum factor of 2.88 due to 
the modifications of the A* algorithm. In future work, the goal 
is to further improve the performance, by outsourcing more 
tasks to the FPGA.  
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