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Detecting and Measuring Human Walking in Laser Scans*
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Abstract— This paper presents work on detecting and track-
ing human movement in planar range data. Our method stacks
multiple planar scans into a 3D frame where time serves as the
third dimension. This representation simultaneously informs
about the size and shape of the objects in the scene and their
movement, so that no explicit motion models are necessary.
The scene is then segmented into 3D spatio-temporal objects
which are classified as ‘pairs of walking legs’ using methods
from machine vision. Our main contribution is a novel pre-
processing step which aligns the spatio-temporal objects, so
that information about the direction and speed of movement is
factored out of the representation. The advantage is that the
subsequent feature extraction and classification steps are only
exposed to movement patterns without reference to direction
and speed, which are not relevant to recognizing human
walking. The method is empirically evaluated and found to
significantly increase classification accuracy.

I. INTRODUCTION

For many robotics applications, humans are the most
relevant and important element of understanding a scene:
their position and movement should be taken into account
when planning the platform’s motion and they are the focus
of interaction. Specifically in the work described here, we
investigate the application of robotics in assisted living
environments to collect medically relevant data [1]. In this
context, tracking human movement is not only input for
motion planning or HRI, but it is also part of the core
objective of the application. In particular, tracking human
movement is needed to recognize being active around the
house and also to measure walking speed, which are then
used as behavioural and functional indicators regarding an
elderly person’s ability to sustain independent living.

The advantages of using range data to detect and track
movement are that reliable and accurate measurements can
be made, especially in indoors applications, and that the
range data (and especially the planar laser scanner data
discussed here) can be unobtrusively collected by comparison
to wearable motion sensors. What is also interesting is that
planar range data carry, by its nature, very little information.
This is an advantage in avoiding the privacy issues around
collecting and analysing visual or even 3D data, but also
makes it practically impossible to extract characteristic fea-
tures from individual frames. As a consequence, the commu-
nity has drawn its attention to detecting moving objects so
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that characteristic movement patterns can be extracted from
richer object representations that span multiple frames.

This presupposes solving the data association problem
and especially in situations such as occlusion, data sparsity,
and physical proximity of objects. There are two lines of
research: The first is based on Kalman filters that serve as
motion models and track objects by estimating the future
track position from past observations [2]. Although success-
ful, Kalman filters face the key issue of defining the motion
model. To address this, Spinello et al. [3] predefined three
different motion models and in each step chose the one with
the highest probability. Bennewitz et al. [4] proposed an
unsupervised algorithm in which motion patterns were learnt
automatically using expectation-maximization estimation and
Hidden Markov Models. Other approaches are based on
assumptions about the environment to simplify the problem.
Nemati and Astrand [5], for example, use hard limits on
object size to separate moving humans from moving fork-
lifts in an automated industrial environment and limits on
maximum speed and maximum proximity of different objects
to segment scan points into objects and to associate objects
across scans. More recent methods fuse multiple modalities
to improve robustness. Risti¢-Durrant et al. [6], for example,
fused range data with 3D depth data. Although successful
in increasing robustness, the fusion of different modalities
voids the privacy argument in favour of planar range data.

An alternative approach (and the one assumed as the
basis for the work described here) is to stack multiple
planar scans into a 3D frame where time serves as the third
dimension [7]. This representation simultaneously informs
about the size and shape of the objects in the scene and their
movement, so that no explicit motion models are necessary.
These 3D objects are then clustered based on this spatio-
temporal proximity, so that ‘clearer’ scans inside the frame
can help solve occusions and sparsity in more cluttered or
distant instances of the same object’s track through the frame.
After segmentation, these spatio-temporal representations
are treated as 3D objects and classified as ‘human walk-
ing’ instances using methods from machine vision (surface
modelling, HOG feature extraction, and classification). The
fundament assumption is the same as by Nemati and Astrand
[5] that object segmentation and object tracking through time
should be based on geometric proximity. However, in the
method by Varvadoukas et al. [7] these assumptions are
manifested as unsupervised clustering in the Euclidean space
whereas Nemati and Astrand [5] hardwire the definition of
‘human leg’ and ‘forklift’ as limits on the width of these
objects in the scan.

Although proven to be very successful in associating

Preprint submitted to 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Received March 2, 2017.



CONFIDENTIAL. Limited circulation. For review only.

Fig. 1. The 3D spatio-temporal representation (right) and the projection
on the map (left) of somebody walking across the front view of the robot.
The robot is at (X,Y) = (0,0) facing towards the positive half of the
horizontal axis (X), as marked by the black arrow.

data across frames, this method was very sensitive to the
direction of movement: different directions produce radically
different surface models and, consequently, HOG features.
This is due to the fact that the spatial coordinates in the
3D spatio-temporal representation are identical to those in
the original space; as a result, the surface grid depends on
the orientation (walking direction) of each 3D object. This
places an unnecessary heavy burden on the classifier, that
has to generalize into a ‘human walking’ model movement
in all posible directions, each producing radically different
HOG feature vectors.

In this paper propose a preprocessing step that addresses
this shortcoming by aligning the 3D representation so that
it is neutral with respect to the direction of movement. The
paper is organized as follows: we first give a brief overview
of the background on recognizing and measuring human
walking that we assume as a basis (Section II) and then pro-
ceed to present our alignment method (Section III), present
experimental results (Section IV), and conclude (Section V).

II. RECOGNIZING HUMAN WALKING

As already mentioned, the core idea of the HPR method
is to approach walking pattern recognition as the task of
classifying the 3D objects created by stacking consecutive
2D scans into a 3D spatio-temporal representation, where
X,Y is the planar data and Z is the time dimension [7].

More specifially, the first step is to remove the points
that correspond to the static map created by Simultaneous
Localization and Mapping and used to localize the robot
in the environment. The remaining scan points correspond
to dynamic objects in the environment. These are used to
construct 3D frames by translating the polar scans into the

2D Cartesian space, and then buffering multiple such 2D
planes for a period of time. The time dimension is translated
into space by multiplying with 5 kmph, the average speed
of human walking. In this representation, a pair of walking
legs creates the characteristic helix-like shape curves shown
in Fig. 1.

The 3D data points are separated and grouped into 3D ob-
jects using the DBSCAN clustering algorithm [8]. DBSCAN
is an established density-based clustering technique which
builds clusters of arbitrary shape, and is efficient for low-
dimensional data. DBSCAN fits our spatial data very well,
because it takes advantage of the proximity of the data points
in the plane. Another advantage is DBSCAN’s non-linear
separation of clusters, facilitating crossing paths resulting in
non-linear disjunctions. Finally, DBSCAN is robust to noise
due to the triggering and the accuracy of laser scans. In
our experiments we use Euclidean distance as the distance
metric, with 40 set as the minimum number of points in a
cluster.

The next step is to apply surface modelling in order
to compose a surface that fits the point cloud. The fitting
defines the function y = f(z,x), where z is the scaled time
dimension and z,y are the Cartesian coordinates with the
robot located at (0, 0) facing towards the positive half of the
y axis. In this manner, (a) occlusion guarantees that f(-) is
a function; and (b) we fit the most informative surface, the
one facing the scanner, and not the ‘ceiling’ view that would
only give us movement patterns without showing the motion
of the legs.!

The next step is to extract Histograms of Oriented Gra-
dients (HOG), which are descriptors of the gradients in
the image. In our experiments we use the sk-image im-
plementation’ of the HOG descriptors proposed by Dalal
and Triggs [9]. The extracted features are then used by
classification models, where we have experimented with a
Naive Bayes classifier with PCA pre-processing for reducing
dimensionality to independ features, with Support Vector
Machines under the Radial Basis Function (RBF) kernel, and
with Linear Discriminant Analysis (LDA).3

The final step is to link the 3D spatio-temporal objects
that have been classified as ‘human walking’, in order to
track through time the movement of individual humans in the
scene. In order to achieve this, we allow these 3D objects to
ovelap in time by placing some 2D scans in both the previous
and the next consequtive 3D frame. For each such sequence
of partially overlapping frames, we compute the median
3D point from each frame. We then project these points to
the spatial plane and translate the temporal coordinate back
to time. The end-result is the walking person’s trajectory
in space as a series of X, Y coordinates annotated with

IThe  implementation used in  our experiments is a
Python port for ROS of the MATLAB implementation at
http://www.mathworks.com/matlabcentral/fileexchange
/8998-surface-fitting-using-gridfit

2See http://scikit-image.org

3All three, as implemented in Python in the sk-learn library, see
http://scikit-learn.org
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Fig. 2. Median points of clusters projected to the plane. Red arrows show
positions of markers placed on the ground every 1 m.

timestamps. Walking speed measurements are made on this
final representation (Fig. 2).

This complete pipepine is implemented in Python
for ROS Hydro and is publicly available on
https://github.com/roboskel The background
described in this section can be retrieved at the release
tagged 1. 0, while the implementation of the new component
described and evaluated in the following sections is included
in the release under tag 2.0.0.4

III. RANGE DATA CLUSTER ALIGNMENT

The clusters formed by human walking give the charac-
teristic shape shown in Fig. 1. Each of the two traces in that
figure tracks a leg and the overall shape results from the
human walking pattern where legs alternate between being
almost stationary during the stance (the parts of the track
that rise in the figure) and then moving rapidly during the
swing (the almost horizontal part of the track in the figure).

The inclination of the imaginary centerline between the
two traces gives the walking speed and the projection of this
centerline on the spatial plane gives the walking direction.
The core idea of our method is that we can improve the
classification models by aligning movement traces so that
their imaginary centerlines have the same pose. If we can do
this, we factor speed and orientation out of the point cloud
and, subsequently, also out of the resulting surface model
and HOG descriptors.

To achieve this, we observe that the data points of each
cluster can be approximated by a Gaussian distribution, thus
they can be described by a mean value and a covariance
matrix. The Gaussian distribution has a direction in the space
that can be approached by an ellipsoid. Our aim is to find

4The repository for the system described here is
https://github.com/roboskel/HumanPatternRecognition
Version 2.0.0 can be downloaded from
https://github.com/roboskel/HumanPatternRecognition
/archive/2.0.0.tar.gz

the main direction of this ellipsoid in order to rotate the
data points of the cluster. To do this, we use Singular Value
Decomposition (SVD), which decomposes a matrix into three
matrices U, A,V where A is a diagonal matrix and U, V are
orthogonal matrices.

SVD fits our approach because we can achieve rotation
through the use of the eigenvectors. Specifically, we apply
SVD in the covariance matrix of each cluster in order to
rotate it in the direction that has the maximum variance. The
SVD method is used as a tool for the decomposition of the
covariance matrix, to get the eigenvalues and eigenvectors
that are necessary for the declaration of the main direction
of each cluster.

With the use of SVD method we achieve the alignment
of the eigenvalues and the corresponding eigenvectors. By
sorting the eigenvalues in a descending order, we use the
respective eigenvectors to form the transformation matrix.
The maximum eigenvalue represents the main direction of
the cluster, thus for its normal distribution too. As the co-
variance matrix is symmetric, V' and U are same. Therefore,
U is the linear transformation matrix that we will use for the
alignment of the cluster points, as (1) shows.

X' =U-(X - p) (1)

where X, X’ are the [ x N initial and transformed data
matrices respectively and U is the [ x [ transformation matrix.
The attribute p is the mean value of X, thus (X —pu) specifies
a transferring preprocessing step.

As (1) specifies, each transformed data point of the cluster
is derived from the projection of the initial data point in
the space, where it is declared by the eigenvectors of U
matrix. The final alignment of each cluster is computed by
transferring its data points to the beginning of the axes and
rotating them with the use of the U transformation matrix.
The align stage leads to the alignment of the clusters by the
same direction, regarding the corresponding variability.

To demonstrate the effect of alignment on the surface
fitted to clusters, consider Fig. 3 showing a scene where
a person is walking in a different direction relative to the
robot than in Fig. 1. Although the resulting clusters look
visually similar, their different direction makes their similar-
ity less pronounced in their grid images (Fig. 5a and 5c).
Alignment emphasises their similarities and tranforms the
original problem into one that is more suited for classifying
using HOG descriptors (Fig. 5b and 5d). What should be
noted is that using the direction of the Gaussian elipsoid of
the point cloud to find the direction of the transformation
we are expressing a property of natural, uninhibited human
gait. In other movement patterns, such as stepping sideways,
the largest variance in the point cloud will not necessarily
correspond with the direction of movement and will not
maintain direction invariance in the HOG descriptors. This
is, however, a positive quality of the approach for our use
case, as it removes unnatural and special circumstances from
our walking speed measurements.

Finally, it should be noted that alignment does not obscure
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Fig. 3. The 3D spatio-temporal representation (right) and the projection
on the map (left) of somebody walking away from the robot. The robot is
at (X,Y) = (0,0) facing towards the positive half of the horizontal axis
(X), as marked by the black arrow.
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Fig. 4. The 3D spatio-temporal representation (right) and the projection

on the map (left) of a stool rolling near a person standing still. The robot is
at (X,Y) = (0,0) facing towards the positive half of the horizontal axis
(X), as marked by the black arrow.

the distinction between human walking and other movement.
As an example, Fig. 4 shows a cluster from a stool pushed to
roll on its wheels. As can seen in Fig. 5e and 5f, the aligned
grid image remains separable from the walking pattern grid
images.

IV. EVALUATION

To test our alignment method, we will compare the classi-
fication accuracy of the pipeline desctibed in Section II with
and without the alignment stage. We have collected scans
where people walk with speed and direction changes, periods
of standing still, and interacting with furniture in the room
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(c) Raw cluster from Fig. 3 (d) Aligned cluster from Fig. 3
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(e) Raw cluster from Fig. 4 (f) Aligned cluster from Fig. 4

Fig. 5. Grid images of the three clusters.

(sitting in chairs, picking and putting down boxes, walking
between furniture).
The range finder is a Hokuyo UST-10LX mounted on
a robot that is stationary throughout data collection. The
following parameters were used:
e The range finder is mounted 12cm above the ground,
collecting scans just above the human’s ankle
o One scan is obtained every 25msec
o Each clustering frame includes 40 scans, and lasts 1 sec
o Clustering is done on Euclidean distance as the distance
metric, with a minimum of 40 points in a cluster
e 36D HOG features are extracted from 16x16 surfaces
with the use of 6 histogram bins, 8x8 cell size in pixels
and with un-normalisation in the histogram’s blocks

We collected 811 such frames, with a duration of 1 sec each,
split into 12 scenes. These were randomly split into a training
set (70% of the data) and a testing set (the rest of the data).
We used the resulting feature vectors to evaluate binary
classification between human walking vs. anything else. We
experimented with three different classification methods:

o Naive Bayes with Principal Component Analysis (PCA)
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pre-processing for reducing dimensionality to independ
features, as previously used by Varvadoukas et al. [7]
in their experiments.

o Linear Discriminant Analysis (LDA), a linear classifier
that is closely related to Naive Bayes. LDA uses Bayes’
rule and the model is generated by fitting class condi-
tional densities to the data.

o Support Vector Machine (SVM) under the Radial Basis
Function (RBF) kernel.

The metrics that we use in order to evaluate our clas-
sification experiments are: Precision, Recall and Accuracy.
Table I presents the experimental results with and without
the alignment stage. We can observe that the alignment stage
improves performance for all three classification method.
Moreover we can conclude that LDA classifier is better suited
to this task, achieving an accuracy of 90.46%, which is
the highest among all our experiments with and withought
alignment.

What we can also observe in Table I is that SVM
massively overgeneralizes when presented with non-aligned
feature vectors and accepts too many false positives (i.e.,
low precision). The precision increase under alignment is
consistent with our hypothesis that alignment homogenizes
and makes separable the HOG feature vectors.

V. CONCLUSIONS

We presented a system that analyses planar range data
to recognize human walking patterns and to separate them
from patterns of other moving objects. To some extent,
natural human walking is also separable from unusual gaits,
sideways stepping, and other patterns that diverge from the
common forward moving, stance/swing cycle.

The contribution presented in this paper is the addition of
an alignment stage which converts range data into a represen-
tation where the 3D ‘walking legs’ objects are aligned to the
direction of movement. The advantage of this pre-processing
is that walking patterns remain similar regardless of the
direction of movement and the resulting features are better
descriptors of the movement pattern. Classifying aligned data
evaluates favourably to classifying the same data without
alignment, increasing classification accuracy from 73% to
90%.

TABLE I
EVALUATION OF CLASSIFICATION PERFORMANCE WITH AND WITHOUT
ALIGNMENT

Classifier Metrics ~ Without alignment  With alignment
Precision 100.00% 81.25%
NB + PCA Recall 22.76% 5591%
Accuracy 23.32% 81.27%
Precision 6.25% 82.81%
SVM Recall 40.00% 55.79%
Accuracy 76.67% 81.27%
Precision 12.50% 76.56%
LDA Recall 28.57% 80.33%
Accuracy 73.14% 90.46 %

The system is developed in the context of RADIO, an
independent ageing project where a robotic home assistant
is used to collect clinical observations regarding the func-
tional capability of the home’s occupant. One of the clinical
requirements for RADIO system is measuring walking speed,
while simultaneously satisfying ethical requirements regard-
ing the obtrusiveness of the data collection methods and the
privacy considerations regarding the nature of the data.

Our  prototype is  implemented in  Python
for ROS Hydro, open source and publicly
available at https://github.com/roboskel/
HumanPatternRecognition
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