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ABSTRACT
This paper presents work on detecting and tracking human move-
ment in planar range data. Our method stacks multiple planar scans
into a 3D frame where time serves as the third dimension. This rep-
resentation simultaneously informs about the size and shape of the
objects in the scene and about their movement, so that no explicit
motion models are necessary. The scene is then segmented into 3D
spatio-temporal objects which are classified as ‘pairs of walking
legs’ using methods from machine vision. Our main contribution
is a novel pre-processing step which aligns the spatio-temporal
objects, so that information about the direction and speed of move-
ment is factored out of the representation. The advantage is that
the subsequent feature extraction and classification steps are only
exposed to movement patterns without reference to direction and
speed which are not relevant to recognizing human walking. The
method is empirically evaluated and found to significantly increase
classification accuracy.

CCS CONCEPTS
• Computing methodologies→ Vision for robotics; Shape in-
ference; Supervised learning by classification; •Applied computing
→ Health informatics;
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1 INTRODUCTION
For many robotic applications, humans are the most relevant and
important element of understanding a scene: their position and
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movement should be taken into account when planning the plat-
form’s motion and they are the focus of interaction. That alone
motivated a considerable body of robot perception work to look
into recognizing and tracking human figures in the scene. More
recently, and in the context within which this paper operates, this
trend is further stimulated by applications from assisted living envi-
ronments where robots are expected to collect medically relevant
data, including data for gait analysis [1]. In this context, tracking
human movement is not only input for motion planning, obstable
avoidance, and human-robot interaction, but it is also part of the
core objective of the application. In particular, tracking human
movement is needed to recognize being active around the house
and also to measure walking speed, which are then used as be-
havioural and functional indicators regarding an elderly person’s
ability to sustain independent living.

Among the perception modalities and methods for recognizing
and tracking humans, range data collected from laser scanners offer
significant advantages for assisted living applications: reliable and
accurate measurements can be made, especially in indoors applica-
tions, and robot-mounted laser scanners can unobtrusively collect
data by remote sensing without requiring wearable motion sensors.
What is also interesting is that range data (and especially the planar
laser scanner data discussed here) carries, by its nature, very little
information. This is an advantage for avoiding the privacy issues
around collecting and analysing visual or even 3D data collected
in private residences, but it also makes it practically impossible to
extract characteristic features from individual frames. As a conse-
quence, the community has drawn its attention to detectingmoving
objects so that characteristic movement patterns can be extracted
from richer object representations that span multiple frames. This
fits nicely with the technical objectives of assisted living applica-
tions, since they require measurements regarding walking and, in
general, mobility.

However, analysing representations that span multiple frames
presupposes solving the data association problem and especially in
situations such as occlusion, data sparsity, and physical proximity
of objects. Several studies in multiple-target tracking track objects
by using using Kalman filters as motion models that estimate the
future track position from past observations [2].

An approach applied in indoors and outdoor scenarios too for
human detection, tracking and following, is presented by Leigh
et al. [7]. Firstly they group together laser points that are withing
a predefined threshold, in a way that a person’s two legs are been
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Figure 1: The 3D spatio-temporal representation (middle) and the projection on the map (left) of somebody walking across
the front view of the robot (right). The robot is at (X ,Y ) = (0, 0) facing towards the positive half of the horizontal axis (X), as
marked by the black arrow.

separated into two distinct clusters. The clusters are classified as
humans or not by training a random forest classifier with some
statistical and geometric features of the clusters, as Arras et al. [3]
proposed. The output confidence level of the classifier along with
the cluster’s location are given as input to the tracking module of
their system [7]. Specifically, the position of each detected cluster
is used for Kalman filtering with a constant motion model. Then a
Global Nearest Neighbour (GNN) data association is applied in order
to track multiple detected clusters.

Although successful, Kalman filters face the key issue of defin-
ing the motion model. To address this, Spinello et al. [10] prede-
fined three different motion models and in each step chose the
one with the highest probability. Bennewitz et al. [4] proposed
an unsupervised algorithm in which motion patterns were learnt
automatically using expectation-maximization estimation and Hid-
den Markov Models. Other approaches are based on assumptions
about the environment to simplify the problem. Nemati and Ås-
trand [8], for example, use hard limits on object size to separate
moving humans from moving forklifts in an automated industrial
environment and limits on maximum speed and maximum proxim-
ity of different objects to segment scan points into objects and to
associate objects across scans. More recent methods fuse multiple
modalities to improve robustness. Ristić-Durrant et al. [9], for ex-
ample, fused range data with 3D depth data. Although successful
in increasing robustness, the fusion of different modalities voids
the privacy argument in favor of planar range data.

An alternative approach (and the one assumed as the basis for
the work described here) is to stack multiple planar scans into a 3D
frame where time serves as the third dimension [11]. This repre-
sentation simultaneously informs about the size and shape of the
objects in the scene and their movement, so that no explicit motion
models are necessary. These 3D objects are then clustered based
on this spatio-temporal proximity, so that ‘clearer’ scans inside the
frame can help solve occlusions and sparsity in more cluttered or
distant instances of the same object’s track through the frame. After
segmentation, these spatio-temporal representations are treated
as 3D objects and classified as ‘human walking’ instances using

methods from machine vision (surface modeling, histogram of ori-
ented gradients) to extract classification features. The fundamental
assumption is the same as by Nemati and Åstrand [8] that object
segmentation and object tracking through time should be based on
geometric proximity. However, in the method by Varvadoukas et al.
[11] these assumptions are manifested as unsupervised clustering
in the Euclidean space whereas Nemati and Åstrand [8] hardwire
the definition of ‘human leg’ and ‘forklift’ as limits on the width of
these objects in the scan.

Although proven to be very successful in associating data across
frames, this method was very sensitive to the direction of move-
ment: different directions produce radically different surface models
and, consequently, histogram of oriented gradients (HOG) features.
This is due to the fact that the spatial coordinates in the 3D spatio-
temporal representation are identical to those in the original space;
as a result, the surface grid depends on the orientation (walking
direction) of each 3D object. This places an unnecessary heavy bur-
den on the classifier, that has to generalize into a ‘human walking’
model movement in all possible directions, each producing radically
different HOG feature vectors.

In this paper propose a preprocessing step that addresses this
shortcoming by aligning the 3D representation so that it is neutral
with respect to the direction of movement. The paper is organized
as follows: we first give a brief overview of the background on rec-
ognizing and measuring human walking that we assume as a basis
(Section 2) and then proceed to present our alignment (Section 3)
and tracking (Section 4) methods, experimental results (Section 5),
and conclusion (Section 6).

2 RECOGNIZING HUMANWALKING
As already mentioned, the core idea of the HPR method is to ap-
proach walking pattern recognition as the task of classifying the 3D
objects created by stacking consecutive 2D scans into a 3D spatio-
temporal representation, where X,Y is the planar data and Z is the
time dimension [11].

More specifically, the first step is to remove the points that cor-
respond to the static map created by Simultaneous Localization
and Mapping and used to localize the robot in the environment.
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The remaining scan points correspond to dynamic objects in the
environment. These are used to construct 3D frames by translating
the polar scans into the 2D Cartesian space, and then buffering
multiple such 2D planes for a period of time. The time dimension
is translated into space by multiplying with 5 kmph, the average
speed of human walking. In this representation, a pair of walking
legs creates the characteristic helix-like shape shown in Fig. 1.

The 3D data points are separated and grouped into 3D objects
using the DBSCAN clustering algorithm [6]. DBSCAN is an estab-
lished density-based clustering technique which builds clusters of
arbitrary shape, and is efficient for low-dimensional data. DBSCAN
fits our spatial data very well, because it takes advantage of the
proximity of the data points in the plane. Another advantage is DB-
SCAN’s non-linear separation of clusters, facilitating crossing paths
resulting in non-linear disjunctions. Finally, DBSCAN is robust to
noise due to the triggering and the accuracy of laser scans. In our
experiments we use Euclidean distance as the distance metric, with
40 set as the minimum number of points in a cluster.

The next step is to apply surface modeling in order to compose
a surface that fits the point cloud. The fitting defines the function
y = f (z,x), where z is the scaled time dimension and x ,y are
the Cartesian coordinates with the robot located at (0, 0) facing
towards the positive half of the y axis. In this manner, (a) occlusion
guarantees that f (·) is a function; and (b) we fit themost informative
surface, the one facing the scanner, and not the ‘ceiling’ view that
would only give us movement patterns without showing the motion
of the legs.1

The next step is to extract Histograms of Oriented Gradients
(HOG), which are descriptors of the gradients in the image. In our
experiments we use the sk-image implementation2 of the HOG de-
scriptors proposed by Dalal and Triggs [5]. The extracted features
are then used by classificationmodels, where we have experimented
with a Naive Bayes classifier with PCA pre-processing for reducing
dimensionality to independent features, with Support Vector Ma-
chines under the Radial Basis Function (RBF) kernel, and with Linear
Discriminant Analysis (LDA).3

3 RANGE DATA CLUSTER ALIGNMENT
The clusters formed by humanwalking give the characteristic shape
shown in Fig. 1. Each of the two traces in that figure tracks a leg and
the overall shape results from the human walking pattern where
legs alternate between being almost stationary during the stance
(the parts of the track that rise in the figure) and then moving
rapidly during the swing (the almost horizontal part of the track in
the figure).

The inclination of the imaginary centerline between the two
traces gives the walking speed; the projection of this centerline
on the spatial plane gives the walking direction. The core contri-
bution of the work described in this paper is that we can improve
the classification models by aligning movement traces so that their

1Specifically, we use in our experiments the Gridfit algorithm, as it can
be found at http://www.mathworks.com/matlabcentral/fileexchange
/8998-surface-fitting-using-gridfit
We re-implemented the algorithm in Python for the benefit of ROS integration.
2See http://scikit-image.org
3All three, as implemented in Python in the sk-learn library, see
http://scikit-learn.org

‘imaginary centerlines’ have the same pose. If we can do this, we fac-
tor speed and orientation out of the point cloud and, subsequently,
also out of the resulting surface model and HOG descriptors.

To achieve this, we observe that the data points of each cluster
can be approximated by a Gaussian distribution, thus they can be
described by a mean value and a covariance matrix. The Gaussian
distribution has a direction in the space that can be approached by
an ellipsoid. Our aim is to find the main direction of this ellipsoid
in order to rotate the data points of the cluster. To do this, we use
Singular Value Decomposition (SVD), which decomposes a matrix
into three matricesU ,Λ,V where Λ is a diagonal matrix andU , V
are orthogonal matrices.

SVD fits our approach because we can achieve rotation through
the use of the eigenvectors. Specifically, we apply SVD in the covari-
ance matrix of each cluster in order to rotate it in the direction that
has the maximum variance. The SVD method is used as a tool for
the decomposition of the covariance matrix, to get the eigenvalues
and eigenvectors that are necessary for the declaration of the main
direction of each cluster.

With the use of SVD, we achieve the alignment of the eigenvalues
and the corresponding eigenvectors. By sorting the eigenvalues in
a descending order, we use the respective eigenvectors to form the
transformation matrix. The maximum eigenvalue represents the
main direction of the cluster, and thus also the main direction of its
normal distribution. As the covariance matrix is symmetric, V and
U are same. Therefore, U is the linear transformation matrix that
we will use for the alignment of the cluster points:

X ′ = U · (X − µ) (1)

where X , X ′ are the l × N initial and transformed data matrices
respectively andU is the l × l transformation matrix. The attribute
µ is the mean value of X , thus (X − µ) specifies a transferring
preprocessing step.

As Eq. 1 specifies, each transformed data point of the cluster is
derived from the projection of the initial data point in the space,
where it is declared by the eigenvectors of U matrix. The final
alignment of each cluster is computed by transferring its data points
to the beginning of the axes and rotating them with the use of the
U transformation matrix. The align stage leads to the alignment
of the clusters by the same direction, regarding the corresponding
variability.

To demonstrate the effect of alignment on the surface fitted to
clusters, consider Fig. 2 showing a scene where a person is walking
in a different direction relative to the robot than in Fig. 1. Although
the resulting clusters look visually similar, their different direction
makes their similarity less pronounced in their grid images (Fig. 4a
and 4c). Alignment emphasises their similarities and transforms
the original problem into one that is more suited for classifying
using HOG descriptors (Fig. 4b and 4d). What should be noted is
that using the direction of the Gaussian ellipsoid of the point cloud
to find the direction of the transformation we are expressing a
property of natural, uninhibited human gait. In other movement
patterns, such as stepping sideways, the largest variance in the
point cloud will not necessarily correspond with the direction of
movement and will not maintain direction invariance in the HOG
descriptors. This is, however, a positive quality of the approach for
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Figure 2: The 3D spatio-temporal representation (middle) and the projection on the map (left) of somebody walking away
from the robot (right). The robot is at (X ,Y ) = (0, 0) facing towards the positive half of the horizontal axis (X), the location
marked by the black arrow in the map projection.

Figure 3: The 3D spatio-temporal representation (middle) and the projection on the map (left) of a stool rolling near a person
standing still (right). The robot is at (X ,Y ) = (0, 0) facing towards the positive half of the horizontal axis (X), the location
marked by the black arrow in the map projection.

(a) Raw cluster from Fig. 1 (c) Raw cluster from Fig. 2 (e) Raw cluster from Fig. 3

(b) Aligned cluster from Fig. 1 (d) Aligned cluster from Fig. 2 (f) Aligned cluster from Fig. 3

Figure 4: Grid images of the three clusters.
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Figure 5:Median points in the plane that show the trajectory
of a walking human tracked across several frames. The two
different point colors represent the two 4mspans recognized
by the system. The ground truth is derived frommarkers on
the ground set 1m appart with their position given here by
the red lines.

our use case, as it removes unnatural and special circumstances
from our walking speed measurements.

Finally, it should be noted that alignment does not obscure the
distinction between human walking and other movement. As an
example, Fig. 3 shows a cluster from a stool pushed to roll on its
wheels. As can seen in Fig. 4e and 4f, the aligned grid image remains
separable from the walking pattern grid images.

4 CLUSTER TRACKING AND SPEED
MEASUREMENT

We have so far discussed the categorization of moving objects in
laser scans as human walking or other movement, by recogniz-
ing walking patterns in frames of a relatively short duration. Our
frames-based method circumvents the hardests aspects of the data
association problem, but to offer a complete solution we still need
to associate the recognized objects between frames. For instance,
for our gait analysis use case, the requirement is that walking speed
is measured over a distance of 4m. Since frames are shorter than the
time it takes to walk 4m, we need to track the movement of each
person in the scene and to make measurements over sequences of
frames.

To achieve this, we re-defined frames so that they ovelap in
time, by placing two (2) scans in both the previous and the next
consequtive frame. In this manner, we have a partial overlap that
helps us link each 3D object classified as ‘human walking’ in one
frame with the most-overlapping human-walking 3D object in
the next frame. We use the Euclidean distance metric to compute
proximity. Since the core method described in the previous section
has already clarifiedmany of the situations where occlusions appear
into dicreet 3D objects for each human, this is a considerably easier
task than directly associating point between scans in the raw data.

Besides tracking the same person across frames, we also need
to reduce these point clouds to a position on the planar map, in
order to make the walking speed measurement. To do this, we slice
the clusters to segments (thinner than complete frames) along the
time dimention. Each segment is reduced to its median 3D point
and projected to the spatial plane, so that we get a series of times-
tamped positions of the person on the planar map. Walking speed
measurements are made on this final representation (Figure 5).

The advantage of measuring walking speed as described here
(as opposed to directly using the raw scan) is tracking over longer
sequences and also making measurements on moving objects that
match the normal human gait patterns. If a person stands still in
the middle of a 4m span or needs to walk sideways or in general
needs for whatever reason to assume a gait that does not match
normal walking, those sequences are disregeraded.

5 EXPERIMENTS AND RESULTS
The methods described above are implemented in Python for ROS
Indigo. The complete ROS node pipeline implementing the work de-
scribed here is publicly available, as well as the the implementation
of the background we compare against (cf. Section 2).4

Tests are made on data recorded by a stationary TurtleBot2,
observing the scene with a Hokuyo UST-10LX range finder. The
range finder is mounted 12cm above the ground, collecting scans
just above the human’s ankle. One scan is obtained every 25msec.

5.1 Cluster Alignment Evaluation
To test our alignment method, we compare the classification accu-
racy of the pipeline described in Section 2 with and without the
alignment stage. We have collected scans where people walk with
speed and direction changes, periods of standing still, and inter-
acting with furniture in the room (sitting in chairs, picking and
putting down boxes, walking between furniture).

The following parameters were used:

• Each clustering frame includes 40 scans, and lasts 1 sec
• The average speed of human walk is set to 5 kmph. This
parameter is used to convert time into distance and create
the 3D spatio-temporal frames (Section 2).

• Clustering is done on Euclidean distance as the distance
metric, with a minimum of 40 points in a cluster

• 36D HOG features are extracted from 16x16 surfaces with
the use of 6 histogram bins, 8x8 cell size in pixels and with
un-normalisation in the histogram’s blocks

We collected 811 such frames, with a duration of 1 sec each, split
into 12 scenes. These were randomly split into a training set (70%
of the data) and a testing set (the rest of the data).

We used the resulting feature vectors to evaluate binary classifi-
cation between human walking vs. anything else. We experimented
with three different classification methods:

4The repository is
https://github.com/roboskel/HumanPatternRecognition
The method can be retrieved at the release tagged 2.0.1. The method described in
Section 2 can be retrieved at the release tagged 1.0.
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Figure 6: Characteristic instance of a scenario where the hu-
man is walking around the back of a box and the clusters
produced by this scene.

• Naive Bayes with Principal Component Analysis (PCA) pre-
processing for reducing dimensionality to independent fea-
tures, as previously used by Varvadoukas et al. [11] in their
experiments.

• Linear Discriminant Analysis (LDA), a linear classifier that is
closely related to Naive Bayes. LDA uses Bayes’ rule and the
model is generated by fitting class conditional densities to
the data.

• Support Vector Machine (SVM) under the Radial Basis Function
(RBF) kernel.

The metrics that we use in order to evaluate our classification
experiments are: Precision, Recall and Accuracy. Table 1 presents
the experimental results with and without the alignment stage.

Table 1: Evaluation of classification performance with and
without alignment

Classifier Metrics Without With
alignment alignment

NB + PCA
Precision 100.00% 81.25%
Recall 22.76% 55.91%

Accuracy 23.32% 81.27%

SVM
Precision 6.25% 82.81%
Recall 40.00% 55.79%

Accuracy 76.67% 81.27%

LDA
Precision 12.50% 76.56%
Recall 28.57% 80.33%

Accuracy 73.14% 90.46%

Figure 7: Tracked clusters in a crossed human situation. The
different colors represent the different clusters (i.e., people)
each scan point was placed into. The circle shows the clus-
tering error.

We can observe that the alignment stage improves performance
for all three classification method. Moreover we can conclude that
LDA classifier is better suited to this task, achieving an accuracy
of 90.46%, which is the highest among all our experiments with
and without alignment. What we can also observe in Table 1 is that
SVM massively overgeneralizes when presented with non-aligned
feature vectors and accepts too many false positives (i.e., low pre-
cision). The precision increase under alignment is consistent with
our hypothesis that alignment homogenizes and makes separable
the HOG feature vectors.

5.2 Cluster Tracking Evaluation
Evaluation is based on recordings of scenarios with proximity situa-
tions and occlusions, sudden and smooth changes in walking speed
and direction or completely stopping and resuming walking, two
people crossing each other while walking, and people walking be-
hind or picking up and relocating a box. Figure 6 has a characteristic
instance.

Besides the Hokuyo UST-10LX, we have also used a Hokuyo
URG-04LX range finder, which is slower and also scans a shorter
range. Both are located 12cm above the ground, thus they collect
data points above the human’s ankle. The following parameters
were used:

• The time scale of UST-10LX is set to 25 msec and of URG-
04LX to 50 msec.

• The clustering window is set to 40 scans for UST-10LX and
to 20 scans for URG-04LX.

• The minimum distance walked to accept a measurement is
4m.

• Based on the experiments presented above, the LDA classifier
performs better so the experiments in this section use the
LDA model.

The evaluation metrics are the Mean Absolute Error (MAE) and
the Mean Relative Error (MRE). MAE gives the mean absolute error
in the time (sec) to walk 4 meters:
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MAE =
1
n
·
n∑
i=1

| fi − yi | (2)

where n is the number of the measurements, where fi are the
system-computed values, and yi the ground-truth values. MRE
indicates how good a measurement is relatively to the size of the
measured quantities:

MRE =
1
n
·

n∑
i=1

| fi − yi |
yi

(3)

Table 2 presents, for both scanners, the MAE and MRE of the
whole dataset and of the dataset excluding the sessions with cross-
ing trajectories. Fig. 7 presents the tracked clusters of a crossed
human session. We can notice that erroroneus clustering of the
points in the circle as ‘red’ radically changes the median point of
the ‘green’ cluster and thus of the walking speed computations.

Naturally, the higher error rate in the crossing scenarios impacts
walking speed measurements. It should be noted, however, that this
has little impact for our particular application where we need one,
indicative, walking speed value per day. This can be extracted by
inference or by statistical aggregation: the system can infer which
measurement instances are more reliable by discarding instances
where other moving objects are detected nearby; or the system
can statistically discard outliers given our use case scenario of
health monitoring for a person living alone and where most of the
measurements can be safely assumed to be of the primary user
without other people in the scene.

6 CONCLUSIONS
We presented a system that analyses planar range data to recognize
humanwalking patterns and to separate them frompatterns of other
moving objects. To some extent, natural human walking is also
separable from unusual gaits, sideways stepping, and other patterns
that diverge from the common forward moving, stance/swing cycle.

The core contribution presented in this paper is the improvement
of a previously published method for detecting human walking pat-
terns by adding an alignment preprocessing stage. Alignment con-
verts range data into a representation where position and direction
of motion is factored out of the 3D ‘walking legs’ objects that are
used for feature extraction and classification. The advantage of this
pre-processing is that walking patterns remain similar regardless
of the direction of movement and the resulting features are bet-
ter descriptors of the movement pattern. Classifying aligned data
evaluates favorably to classifying the same data without alignment,
increasing classification accuracy from 73% to 90%.

Table 2: MAE and MRE for the walking analysis. The error
measures are computed for the whole dataset and for the
subset that excludes the crossing trajectories sessions.

Error Metrics UST-10LX URG-04LX
Complete MAE 0.89 2.29
dataset MRE 33% 59%
Excluding MAE 0.44 2.75
crossing MRE 11% 68%

A secondary contribution is porting the complete processing
pipeline from MATLAB to Python, and using the ROS middleware
for its data acquisition and its inter-component communication.
This facilitated integrating the pipeline into the wider health moni-
toring system developed by the EU project RADIO: Robots in Assisted
Living Environments as an Unobtrusive, Efficient, Reliable and Modu-
lar Solution for Independent Ageing.

In the context of the RADIO application and use cases, medically
relevant information extracted from planar range data is extremely
valuable: Remote sensing satisfies requirements for unobtrusive
data acquisition and the nature of planar range data satisfies privacy
considerations regarding collecting potentially sensitive footage
from private residences. Future work within RADIO will use data
from evaluation studies with primary users during the RADIO
project to identify the best method for extracting the indicative
daily value discussed in Section 5.2.

Further work will look into fusing data from multiple robots
observing the same scene or using the robot’s movement capability
to improve the viewing angle with respect to clarifying occlusions.
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