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Abstract— Localization is one of the four pillars of the 

autonomous robotic control loop. In order to work in complete 

unknown indoor environments, the robot needs to map its 

surroundings. This is done via the simultaneous localization and 

mapping (SLAM) algorithm. However, the SLAM algorithm 

does not provide additional context to the generated map. If this 

information is required, it needs to be provided by the operator. 

With Bluetooth Low Energy (BLE) technology, position 

dependent information can be annotated to the generated map 

without operator input. BLE beacons need to be positioned at 

points of interest for the robot and then need to be localized. 

Because the BLE beacon broadcasts an ID, localization is based 

on the Received Signal Strength Indication (RSSI). This paper 

presents an approach to localize BLE beacons in the RADIO 

indoor environment. The robot has one BLE receiver which must 

be used cleverly in order to triangulate the BLE beacons position. 

Keywords— RADIO, Turtlebot, ROS, Bluetooth Beacons, BLE, 

Localization, Mapping, SLAM, Robotics 

I. INTRODUCTION 

Several applications of the daily living use information about 

their spatial position to enable advanced features and to 

improve the life of the user. Smartphone applications and 

navigation systems are only two examples. Both are usually 

based on the Global Positioning System (GPS) or the Russian 

Globalnaja nawigazionnaja sputnikowaja Sistema 

(GLONASS). A drawback of these systems is the limited 

connectivity within buildings, as the signal strength is often 

not high enough to provide the required functionality. 

For indoor localization, a more reliable approach is required 

that can also work in short range scenarios. GPS and 

GLONASS are hereby stretched to their limits. 

The context of this paper targets the localization of objects 

within a building and uses a reverse methodology. Instead of 

using at least three transmitters, as e.g. required for GPS, only 

one sender is connected to at least three receivers. 

Objects can therefore be equipped with a transmitter, enabling 

stationary receivers to locate the respective device, based on 

signal strengths. 

The Bluetooth Low Energy (BLE) technology avails itself for 

the purpose of indoor positioning, as it is robust and energy 

efficient. Especially the latter is important for battery-driven 

applications, as they last long without the need for exchanging 

or charging the battery. 

So called BLE Beacons are integrated to the devices, making 

them smart and addressable. 

The open-source software framework Robot Operating System 

(ROS) is used to integrate the BLE Beacons to the context of 

RADIO. RADIO, as short for Robots in Assisted Living 

Environments: Unobtrusive, Efficient, Reliable and Modular 

Solutions for Idependent Aging [1], targets the support and 

monitoring of elderly in their homely environment. Within 

ROS, the communication between the receivers is enabled in a 

distributed manner. Different instances of ROS can be started 

on different compute nodes with the target to cover the indoor 

location efficiently and to provide access to the Beacon 

information at any place. Hence, the approach provides a 

universal software framework that is scalable and allows the 

integration of further BLE devices to increase the resolution of 

the position information. 

Another advantage is given by using ROS as a common basis 

for both, the RADIO robot platform and the indoor positioning 

system. The computational overhead that is induced by 

translating between different communication protocols is 

reduced to a minimum, making the entire communication 

more efficient. 
The remainder of the paper is organized as follows: 

Section II depicts related work of ambient assisted living 
environments and the required wireless sensor networks. In 
Section III, the radio environment is explained. While Section 
IV introduces bluetooth low energy (BLE) technology, 
Section V shows the methods and challenges when using the 
BLE technology for localization. Finally, we conclude this 
paper in Section VI. 

II. RELATED WORK 

Care delivery often comes without the use of technology. 
According to [2], user acceptance is the reason for this issue in 
37% of the cases. The development of smart home systems is 
affected by obtrusiveness, which is one of its major obstacles 
[3]. Activities of the daily living (ADL) can be collected and 
analyzed by smart homes or similar sensor networks. These 
networks typically act as assistive environments and 
telemedical systems and can be used to recognize the 
emotional status of patients and the identification of emergency 
situations, such as the detection of falls. Sensors should be 
placed in a mask disposal to achieve the required level of 
unobtrusiveness. Furthermore, no physical contact to the 
patient should be allowed. Hence, monitoring of health needs 
to be done remotely. Technical and user-related advantages 
must be considered to face several shortcomings, such as the 
placement of sensors. Sensors must be placed in a way that is 
both discrete and useful, which is not straightforward. 



Specialized personnel are often required to install the devices, 
when an understanding of the involved audio-visual analysis 
technologies is needed to identify advantageous positions in 
each user's home. Even if sensors could be positioned in an 
optimal way for the analysis tools, they may have a limited 
degree of freedom or are completely stationary. Even if cost 
and complexity play a subordinate role, simply installing 
multiple sensors is not going to overcome the restrictions on 
angles and distances. Using multimodal sensor data to 
recognize ADL and mood related events in an unobtrusive 
manner is a rather challenging task under any circumstances. 
Data is often noisy and has a low quality, when masked sensors 
are used. The interclass similarity is another challenging issue. 
Interclass similarity denotes the similar characteristics of 
sensor data. A complex task for example is the technical 
identification of differences between related activities such as 
drinking coffee or water. Moreover, the null class problem, 
which means that irrelevant data is present, further challenges 
this topic. Finally, class imbalance affects the recognition of 
ADL, i.e. when events occur infrequently. Also the volume and 
diversity of activities are of concern.  

Different ADL can be monitored based on several types of 
sensors. Dressing activity failures were monitored by Matic et 
al. [4]. They used both radio frequency identification (RFID) 
tracking and computer vision. Matic et al. monitored failures 
that can occur when changing clothes. This includes putting 
clothes on in the wrong order, backwards or other way around 
or only partially and at a wrong part of the body. Also the 
number of layers in relation to the current temperature is put 
under observation. Dressing steps can be observed using RFID 
tags and a Bayesian model. The RFID tags had been embedded 
in clothes. Simple dressing events were inferred by a clustering 
scheme that finally fuses the results. The detection of clothes 
changing is also investigated by Sgouropoulos et al. [5]. They 
use a Kinect Sensor to detect the change of particular clothing 
based on depth and RGB (Red-Green-Blue) information. 

RFIDs are also used by Philipose et al. [6]. Wireless gloves 
enable the detection of nine ADL including oral hygiene, 
toileting, washing and personal appearance. The Fusion of 
RFID information and visual properties has also been 
addressed. Sparse and noisy RFID readings combined with 
common-sense knowledge and visual features are used by Wu 
et al. [7] to automatically learning object models from video.  

Cook et al. [8]  used various sensors for monitoring motion, 
temperature, water and stove burner use to observe five basic 
ADL activities: the telephone and medication use, hand 
washing, meal preparation, as well as eating and cleaning. 
Naive Bayes classifiers and Markov models were applied to 
recognize the aforementioned activities. 

The system of Mihailidis et al. [9]  uses visual features and 
custom logic rules in order to recognize steps in hand washing. 
Fleury et al. [10] recognized ADLs including hygiene and 
dressing by successfully fusing several sensors with a Support 
Vector Machine (SVM) classification scheme. Several ADLs 
were detected by Dalton et al. [11] using wearable wireless 
accelerometers. The detection of potentially dangerous 
activities for elderly people is investigated by Zhang et al. [12]. 
They use an RGB-camera along with several ADLs and extract 

kinematic features by tracking joints on the human body. The 
latter is enabled by the Microsoft Kinect Application 
Programming Interface (API). Several one-vs-all SVM 
classifiers are used for the recognition of simple activities. For 
finer activities, such as ADLs, Zhang et al. adopt a bag-of-
motion-features approach before applying SVM classifiers. In 
the context of specific ADLs related to eating and drinking, the 
Kinect Sensor is also used by Hondori et al. [13] in order to 
monitor intake gestures. 

The recognition of bathroom activities, such as bathing, toilet 
use and personal hygiene ADLs is mainly based on sound 
analysis [13]. Also, the detection of sounds relevant to general 
events including doorbell, phone ring and speech was 
investigated by the USEFIL project, based on acoustic 
information. Baseline audio analysis approaches to detect 
ADL-specific audio events, such as dish washing and step 
sounds, were adopted by Vacher et al [14]. Audio information 
can be rather useful when recognizing emotions from speech 
[15]. Most of the face recognition studies focus on combining 
information from visual-based facial expression analysis, as the 
analysis of the human face is important for emotion expression 
and perception [16]. 

III. RADIO ENVIRONMENT 

The technology developed within the RADIO project targets 
the domestic homes of elderly people. But these homes 
normally do not provide infrastructure for ad-hoc ambient 
assisted living services. The infrastructure connecting all 
hardware and software components is provided by RADIO, 
focusing on the unobtrusiveness of the required components. 
The RADIO architecture consists of the smart home services 
and the Internet-of-Things (IoT) platform, as seen in Figure 1. 
The latter is located in the cloud and can be used to control the 
smart home functionality and access relevant data. Different 
tasks are fulfilled by several subgroups of the smart home 
environment. The basic smart home functionality is handled by 
the first subgroup. In the second subgroup, all kinds of devices 
which communicate via Bluetooth are present. They can be 
read for data analysis purposes. The subgroup is described in 
Figure 1 as “BT devices”. The last subgroup represents the 
functionality of the mobile robot platform. The user benefits 
from services provided by the robot. Furthermore, health data 
is collected for monitoring purposes. Internet connectivity is 
not required for providing the intended smart home 
functionality. This means that the user does not notice a 
difference between a connected and a standalone smart home. 
Sensor and actuator devices consist of commercials-off-the-
shelf (COTS) components such as Z-Wave products (Figure 1). 
This helps to ensure long term support and reliability. Z-Wave 
is designed for close range sensor and actuator networks based 
on a wireless communication protocol. Here, no coordinator 
node is required as Z-Wave automatically initializes a full 
mesh network [17]. Hence, it is possible to modularize the 
architecture and add additional sensors if required.  The sensor 
data can be used to recognize daily activities and routines 
besides the basic smart home services. This information can 
also be used to draw inferences about the user’s health. The 
integration of a mobile robot platform to the smart home 
environment is another challenge of the RADIO project. 
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Figure 1: RADIO architecture with IoT platform, robot platform, and wireless 
sensor infrastructure 

A typical Ambient Assisted Living (AAL) environment 

effectively consists of nodes integrated in a home 

environment. Those nodes can be integrated in several devices 

or worn by the user, if they are small and ideally inexpensive. 

Furthermore they should be able to support non-specific 

applications and offer sufficient levels of security. Robots 

represent an integral part of this constellation of wirelessly 

communicating nodes. While actively interacting with the rest 

of the nodes, the presence of the robot is known by the user. 

The robot can therefore be used to communicate with the user. 

IV. BLUETOOTH LOW ENERGY 

Consequently, in the context of RADIO the wireless 

communication technologies are of paramount importance. In 

that respect RADIO aims to heavily invest on the BLE 

communication protocol as a prominent technology for future 

wireless sensor networks and cyber physical systems. On one 

hand, BLE is going to be explored as a solution most fitting 

the RADIO requirements. However research effort is needed 

to enhance and advance BLE in order to address important 

shortcomings posed by RADIO objectives. BLE is usually 

presented as a smaller, highly optimized version of its bigger 

brother, classic Bluetooth. However, BLE has different design 

goals and different approaches in various aspects. In 

particular, the focus was to design a radio standard with the 

lowest possible power consumption optimized for low cost, 

low bandwidth, low power, and low complexity. 

BLE is an extension of the classical Bluetooth technology. It 

has reduced energy consumption and size and can be produced 

at lower costs. BLE allows sending small impulses over long 

distances. 

Within the scope of Bluetooth 4.0, it was developed by the 

Bluetooth Special Interest Group in 2010. BLE hereby exists 

besides the classical Bluetooth standard [18]. Its main 

advantage is the low energy consumption with currents of 12 

µA on average. Max. 12.5 mA are needed for a connection 

interval of one second [19]. Small batteries can therefore be 

used to drive the BLE transmitter and to enable connections 

with up to 50 m in distance. 

Figure 2 presents the four different modes of the BLE 

connection. The unconnected mode is separated into 

Broadcaster and Observer. In connected mode, the device can 

be a peripheral or a central. 

One of the modes is assigned to the BLE device during the 

boot process. The device remains in this mode at least for one 

connection period. 

The BLE modes can be separated in a sending and a receiving 

mode, independently from the connection type. In the 

following, they are described in detail. 

 
Figure 2: BLE connection types 

Broadcaster: Periodically sends advertising packets with up 

to 31 Byte of data. 

Observer: Searches for broadcasters and receives their 

advertising packets via one of three advertising channels. 

Peripheral: Periodically sends connectable-advertising-

packets to allow a master to establish a connection. The 

peripheral itself acts as a slave. 

Central: Periodically searches on the advertising channels for 

connectable-advertising-packets of a peripheral. It tries to 

initiate a connection with the peripheral. Central hereby acts 

as master. 

 

Devices can be identified using the advertising packets, sent 

over advertising channels. These packets can be sent in 

broadcaster or in peripheral mode. They can be received in 

observer and central afterwards. 

Central usually acts as data-processing device, e.g. a robot or a 

smartphone, which requests data from a peripheral, e.g. a heart 

rate monitor or a smartwatch. The peripheral is an independent 

device and provides data of internal sensors to the central. 

This is done using a bidirectional connection. 

Due to low production costs, small sizes and high operating 

time, BLE devices can be integrated in nearly every platform 

[19]. 

V. LOCALIZATION METHODS 

Because bluetooth beacons only broadcast their ID, the 

Received Signal Strength Indication (RSSI) is used in order to 

extract position information out of the beacons signal. The 

RSSI value can then be converted into a distance 

measurement.  With one beacon, a distance measurement can 

only define a region of interest in which the receiver is 

currently located. The BLE receiver can extract a distance to 

the BLE beacons by solving the free space loss equation. 

Generally the free space loss of a signal is described by 
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RxP  describes the signal power received by the receiver and 

TxP describes the signal power sent by the sender. r represents 



the distance between sender and receiver and f is the signals 

frequency which is 2.4 GHz for Bluetooth. According to 

equation (1), the received signal strength is reduced by 
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with increasing distance from the sender. However, 

indoor environments vary greatly in terms of floor plan and 

equipment, thus influencing the signal strength through signal 

reflection, refraction, or interference with other signals. In 

order to incorporate these factors into the distance 

measurement, a logarithmic distance loss model is used. This 

model adds the variable   which describes the signal loss in 

dependence on the surroundings [20]. 
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Here, 
0P  describes the received signal strength to the 

corresponding distance
0r . The value for   is determined 

through several test measurements with known distances. 

However, when using equation (2) for distance calculation, the 

resulting distances are very noisy and inaccurate. Therefore, 

converting the RSSI values into distances requires exhaustive 

measurements in the respective indoor environment because 

the absorption of the signal varies greatly depending on the 

surroundings.  

Thus, we have to approximate the relation between RSSI 

values and the corresponding distance for our specific 

environment. Because the relation of RSSI to distance is 

dependent on the surroundings, we performed measurements 

in a hallway which is 2m wide and 50m long and in a room 

with mm 54   floor space. Figure 3 shows the relation of RSSI 

and distance and the corresponding floorplan of the hallway. 

 
Figure 3 RSSI to distance relation of in the hallway 

A beacon was positioned at the start of the hallway in 1.5m 

height; see Figure 3 the Bluetooth beacon icon on the left. 

Starting from the beacons position, signal strength 

measurements are conducted in 1 meter intervals until the end 

of the hallway is reached. At every measurement position, 40 

individual measurements were executed and the mean value 

was calculated. All measured mean RSSI values are shown by 

the solid line in Figure 3.  Between 8m and 20m, a larger 

width of the hallway can be seen. In this region, the RSSI 

values do not correlate well to their respective distance. We 

can see a decrease of the received signal power from -79dBm 

to -87dBm. This occurrence leads to the assumption that in 

this region more reflections and refractions influence the 

signal strength. In the region after 20m distance, the signal 

power increases again to -73dBm. As can be seen, no direct 

relation between the RSSI values and the corresponding 

distance can be established. The RSSI values do not even 

decrease monotonously with increasing distance. Therefore, 

we determine a regression function which fits the 

measurements in a satisfactory manner. The regression 

function is depicted in equation (3) 

21.345106.1007472.0)( 2  rssirssirssi xxxr . (3) 

The measurements in the second room with a size of mm 54   

show a different behavior of the signal strength in relation to 

the respective distance.  Figure 4 shows the RSSI to distance 

relation of the mm 54   room. 
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Figure 4: RSSI to distance relation of the 4m x 5m room 

For each position, 200 measurements were performed. The 

deviation of an individual measurement can be up to 11% 

from the mean value over all 200 measurements. The standard 

deviation of the respective measurement point is depicted in 

Figure 4 as bar plot. The regression function which fits the 

measurements best is shown in equation (4). 

89.46032.1824022.00010332.0)( 23  rssirssirssirssi xxxxr (4) 

 

With no further information, the distance r describes a sphere 

in 3D space, see equation (5).  
2222 )()()( rzzyyxx mmm  ,  (5) 

with ),( mmm zyx  being the BLE receivers position. This 3D 

problem can be reduced to a 2D problem, by assuming that the 

height zB of the beacons is known. Thus, the sphere can be 

reduced to a circle. The circle has the center at ),( Bmm zyx  and 

the resulting radius can be calculated as 

.)( 22

BmC zzrr      (6) 

Thus we can describe every possible position of a BLE beacon 

through  
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Through thresholding of the beacons measured distance, 

simple annotation of regions within an indoor environment is 

possible. This approach is shown in Figure 5. 
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Figure 5: Thresholding of range determined through the RSSI values of BLE 

beacons 

The main problem with this approach is that the RSSI values 

are very noisy. Because of the RSSIs noisy properties, a single 

RSSI measurement does not yield accurate and therefore 

valuable information. Therefore, some manner of prefiltering 

has to be executed before the distance conversion. As a 

prefilter, we use a 10
th

 order Finite Impulse Response (FIR) 

filter. The FIR filter equation is shown in equation (8). 
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0a  and 
kb  describe the filter coefficients and were determined 

with the help of the Filter Design & Analysis Tool of Matlab. 

The filter coefficients are depicted in TABLE I. . 

TABLE I.  FIR FILTER COEFFICIENTS 

Filter coefficients Value Filter coefficients Value 

0a  1 5b  0.3071 

0b  -0.0349 6b  0.2562 

1b  -0.0370 7b  0.1368 

2b  0.0209 8b  0.02092 

3b  0.1368 
9b  -0.0370 

4b  0.2562 10b  -0.0349 

To show the increase in accuracy through the above filter, we 

compare the raw RSSI measurements with the filtered RSSI 

measurements. A beacon is positioned with 1.2m distance to 

the BLE receiver. Figure 6 shows the different results of raw 

RSSI and filtered RSSI measurements. 
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Figure 6 Comparison of raw RSSI data and FIR filtered RSSI data 

 

It can be clearly seen that the filtered RSSI measurements are 

more stable than the raw RSSI measurements. To further 

evaluate the performance of the filtered RSSI measurement 

approach, we perform RSSI measurements in a radius of 1.2 m 

distance of the BLE beacon, see Figure 7. 150 measurements 

were taken on the circle in order to examine the behavior of 

the RSSI values when the transceiver has the same distance to 

the BLE beacon but a different orientation.  

 
Figure 7: Calculated distance out of filtered RSSI measurements. 150 

measurements were performed in a circle with 1.2m radius distance to the 

BLE beacon. 

When calculating the distance out of the filtered RSSI values 

with equation (4), the mean value for the calculated distance is 

approximately 1.1m with a standard deviation of 0.054m. This 

results in a nominal error to the true distance of 10cm or 8.3%. 

Since the uncertainty of the calculated distances is in the range 

of single digit centimeters, accurate positon estimation with 

several RSSI measurements can be performed.  For accurate 

position estimation through trilateration, three measurements 

at different positions have to be performed. Each position 

generates a circle with a certain radius which describes the 

measured distance to the BLE beacon. In the case of three 

measurement positions, 27 circle constellations exist. These 

27 constellations contain redundant constellations which do 

not need to be analyzed separately. Then, these 27 

constellations can be reduced to 10 different circle 

arrangements. We assume that no circle is contained within 

another circle except if several measurement errors occur. 

Therefore, we discard the circle arrangements where circles 

are included in other circles. Then, we receive four valid 

arrangements as seen in Figure 8. They are used to determine 

the Region Of Interest (ROI) with the help of multi lateration 

[16]. In the first arrangement, each circle has no intersection 

with the other circles. In this case, the center of the shortest 

connection for every circle pair is determined. These three 

calculated points are the triangle out of which the position 

estimation can be calculated for the BLE beacon. The region 

of interest is the circumcircle of the triangle with the radius 

being the uncertainty of the measurement. In the second 

arrangement, exactly two circles intersect with each other. 

Then two intersection points exist. One of the intersection 

points has a larger distance to the third circle than the other 

intersection point. The intersection point with the larger 

distance is discarded and the resulting region of interest is a 

circle with the center point being the center of the shortest 

connection between the remaining intersection point and the 

third circle while the radius of the circle and thus the 

uncertainty is half the length of the connection. In the third 

arrangement, one circle serves as connector to the two other 



circles. The two other circles do not share any intersection 

while the circle in the middle has two intersections with the 

respective circle. In order to determine the region of interest, 

all intersection points have to be calculated and the four 

distances between the intersection point pairs from the 

different circles have to be determined. The intersection point 

pair with the smallest distance is chosen and the center of this 

connection is the center point of the region of interest circle 

with the radius being half the length of the connection. 

1. No intersections 2. Two circle intersection

3. Two separate 
intersections

4. Three circle 
intersection

Center of region of interest Uncertainty  
Figure 8: Four possible circle arrangements 

In the fourth arrangement, all circles intersect with each other. 

The distance to the remaining circle is calculated for each 

intersection point. The intersection point with smallest 

distance to the remaining circle is chosen as final point for the 

resulting triangle. Just as in the first case, our region of 

interest is formed by the circumcircle of the resulting triangle. 

If more than three measurements are performed, this approach 

is also valid. Then we consider four triples of circles (1, 2, 3), 

(1, 2, 4), (1, 3, 4), and (2, 3, 4) separately. The triple with the 

smallest measurement error determines then the final region of 

interest. 

VI. CONCLUDING REMARKS 

Indoor localization is a very important challenge for 
autonomous robotics. Since GPS is not available indoors, other 
technologies have to be used. Bluetooth provides a promising 
approach to the indoor localization problem because it provides 
device services and additionally enables positioning, 
localization, and even self-localization of Bluetooth devices. 
Unfortunately, the signal strength indication is not easily 
mapped to a corresponding distance for localization. Therefore, 
localization methods have to be explored in order to acquire 
accurate and robust position estimation. 
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