
The rostune package:
Monitoring systems of distributed ROS nodes

Georgios Stavrinos and Stasinos Konstantopoulos
National Centre for Scientific Research "Demokritos", Greece

gstavrinos@iit.demokritos.gr, konstant@iit.demokritos.gr

Multi-core distributed ROS systems can radically improve their performance by optimizing
the placement of the different nodes based on their data requirements, the bandwidth
of the required data, and the processing load that a node imposes. This optimization is
often straightforward, but interesting cases also exist where the decision to take nodes
off-boards needs to be supported by run-time analysis.

Problem Statement

• Vision is both CPU-intensive and a consumer of

high-bandwidth data, so it not obvious if it should

be performed on-board.• Clustering and pattern recognition on the 3D point

cloud is CPU-intensive, but if fusion with vision is

needed it is not obvious if it should be off-boarded

on the same processing node as vision or on a dif-

ferent one.

• Vision is both CPU-intensive and a consumer of

high-bandwidth data, so it not obvious if it should

be performed on-board.• Clustering and pattern recognition on the 3D point

cloud is CPU-intensive, but if fusion with vision is

needed it is not obvious if it should be off-boarded

on the same processing node as vision or on a dif-

ferent one.

rostune supports the configuration of distributed ROS systems by providing CPU, RAM
and network statistics. The provided data can be visualized to enhance the better under-
standing of the distributed system’s performance strengths and bottlenecks.
•Universal topic listener
→No message definitions needed
→ Collects bandwidth statistics for all topics
• Collects Linux CPU and RAM statistics for all nodes
•Behaves correctly in multi-core multi-server environments
→One rostune instance per machine
→ Each instance reports statistics only for topics that nodes on this machine have sub-

scribed to.
→ Filters CPU and RAM statistics only for nodes that are running on the same machine

as the rostune instance.

rostune at a Glance

The provided rostune statistics can be visualized using ROS data visualization tools such as rqt_plot and PlotJuggler.

Visualization

Processing pipeline:1. laser_wall_extraction2. laser_clustering3. laser_overlap_trace4. laser_analysis

Processing pipeline:1. laser_wall_extraction2. laser_clustering3. laser_overlap_trace4. laser_analysis

http://radio-project.eu
https://github.com/radio-project-eu
https://github.com/roboskel/rostune

Acknowledgements and References

• Extensive processing, both on-board and using off-board processing units available at
the home.
• An informed decision needs to be made about which nodes should be on-board and which

off-board
→On-board NUC capabilities and battery autonomy
→Wifi bandwidth, latency, and availability limitations

Characteristic Use Case

The RADIO Project

A home assistant/health monitor TurtleBot2, using

robot perception and smart home sensor data.The RADIO Project

A home assistant/health monitor TurtleBot2, using

robot perception and smart home sensor data.

In the graph to the left (CPU time), laser_analysis appears to consume a good portion of
a CPU core. In the graph on the right (bandwidth), laser_clustering feeds laser_analysis
using minimal bandwidth. Based on these observations, we can experiment with sending
laser_analysis off-board on a machine with a higher-end CPU.

rostune Statistics

http://radio-project.eu
https://github.com/radio-project-eu
https://github.com/roboskel/rostune

