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Abstract. The EU-funded project RADIO brings forward a new health care
paradigm according to which a mobile robotic platform can act as
assistant to an elderly person in his/her domestic environment. The main
goal of the robot is to detect ADL (Activities of Daily Life) related to basic
self-care tasks, such as sleeping and taking medications, as well as
instrumental ADL related to housework. ADL detection is based on visual,
depth, and audio signal analysis as well as their fusion. However, robot
assistance in everyday living suffers from limited autonomy dictated by
the robot battery e.g., the robot has to constantly know where the person
is and to be able to move if the person moves to a new location or
another room. In this chapter we present the line of research followed in



the RADIO project in order to reduce the usage of the power-hungry
processing components and, consequently, the need for revisiting, to the
extent possible, the robot charging station. Our approach is based on
building specialized, hardware acceleration units on a Zyng-based FPGA of
Xilinx. Moreover, a hardware-software partitioning approach is
performed base on the HLS (high-level-synthesis) paradigm. In this way,
the robot will be able to perform computation intensive tasks in a power
efficient manner.

1. Introduction

RADIO aims to provide a real-life solution to support elderly people in
their domestic environment Error! Reference source not found.. The core
concept and approach of the project has been presented in more details
in [2]. It is important to note that the RADIO project emphasizes on being
unobtrusive and well accepted while remaining fit for its clinical purpose.
Technically, these requirements pertain to user interfacing, specifically
adapted to the elderly; ethically and clinically adequate data collection,
transmission and processing; integrated and power aware data collection,
transmission and processing; and an efficient and flexible architecture
that can integrate heterogeneous health and comfort-related devices.

In the context of RADIO, the robot acts mainly as a mobile sensor
platform that monitors and guides an elderly or disable person
throughout the entire day, using cameras and microphones as well as
through direct access to the home automation infrastructure.

However, to achieve its mandate, the robot has to constantly know where
the person is and to be able to move if the person moves to a new
location or another room. While monitoring, the robot mechanical
systems do not operate, thus saving battery life. But this is not enough;
the power consumed by the main robot controller is significantly high,
given that (even when not moving) a relatively powerful computing
engine needs to be active. This holds true even during idle time periods
e.g., when the person is sleeping or watching TV, as there is no way for
the robot to know if and when the person intends to move. To reduce this



idle-time power consumption wastage, as part of the RADIO project, a
hardware (HW), FPGA-based implementation of event detection
algorithms is set forward.

2. Data Collection and Processing

Assistive environments are typically implemented as smart homes or
similar sensor networks that collect and analyze data related to mood and
activities of daily life (ADL), as well as automatically providing
notifications to care-givers when specific events are identified such as
falls and similar emergencies. This is a well-studied subject with a rich
literature and developed systems. One major line of research takes
advantage of wearable sensors or sensors embedded in household items
and appliances in order detect a wide range of ADLs [11][12][13][14].
Such approaches are not well aligned with the objective of developing a
system that is unobtrusive by, among other features, also avoiding
requirements on what the end-users should wear or use.

RADIO concept follows the line of research that uses computer vision and
audio analysis to recognize interesting events. In fact, one of the main
outcomes of the project is our analysis of the extent to which unobtrusive
monitoring is adequate to meet strigent clinical requirements. To the best
of our knowledge, the presented methodology is unique in assisted living
environments; we do not assume as a goal the maximal detail and
accuracy that state-of-the-art sensing hardware can achieve. Instead we
assume as a goal, the collection of the minimum amount of sensitive
content and personal information, at the minimum obtrusion, that will
allow medical personnel to make informed decisions.

Naturally, such a broadly defined goal needs to be refined to reflect the
societal impact that RADIO aims to achieve: allowing elderly people with
mild cognitive impairment to maintain an independent life, at their own
home, for longer than what is safely possible today. In order to have a
guideline about what information is used by medical doctors to assess
such conditions, the interRAI Long-Term Care Facilities Assessment
System (interRAl LTCF) has been thoroughly analyzed. interRAI LTCF



enables comprehensive, standardized evaluation of the needs, strengths,
and preferences of persons receiving short-term post-acute care in skilled
nursing facilities as well as persons living in chronic care and nursing
home institutional settings. As a result, we have determined the mood
and ADL recognition items that can be immediately and automatically
extracted and those that appear to be outside the reach of the current
state-of-the art.

Some characteristic examples include clothes change detection, where
recognizing the end-result of having changed clothes [5] is sufficient while
the detailed capture of all the motions performed in order to change
clothes offers no medically relevant information. Similarly, depth camera
data can be used to detect potentially dangerous activities [6] and food
intake [7]. Moreover, acoustic processing can provide information about
several ADLs, such as hygiene, washing and walking [8]. Finally, mood can
be inferred from both visual and audio analysis [8][9][10].

These observations have led us to a design where the main data
collection device is a mobile robot equipped with audio, visual, and depth
camera. The mobility of the robotic platform is important for placing the
sensors at positions that offer the maximum level of detail (e.g., full-face
images for recognizing mood from facial expressions) without placing
requirements of the end-user such as having to move in front of a sensor
or having to use specific equipment. This choice, however, also introduces
challenges due to the heterogeneity of the home automation and
robotics infrastructures, as well as due to the low power consumption
requirements necessary for having a mobile platform with sufficient
battery autonomy.

3. The AAL Robot as a Heterogeneous Processing
System
The RADIO robot is outfitted with two processing units: an Intel NUC

which is responsible for controlling sensors and actuators and an Avnet
PicoZed equipped with Xilinx Zyng-7000 all programmable System on Chip



(APSoC) [4]. Additional devices include an Asus Xtion Pro camera and a
Hokuyo laser scanner [3]. In general, there are two types of data
processed in the system:

e High throughput streaming data created from continually
receiving the output of a microphone (audio stream) or a camera
(video stream)

e Event or control-like data of relatively small size, collected by
sensors. Event/measurement data can also be the outcome of
streaming data analysis, e.g., processing of video can lead to the
generation of an “exit” event if the camera looks towards the
door

External interfacing is achieved through RF networks with emphasis on
low power and minimal usage of the RF spectrum. Adopted
communication technologies are not suitable for conveying real time
streaming data like audio or video, leaving no other option, but to
perform the processing of the multimedia workloads in the robot.

As mentioned, our AAL approach heavily relies on the acquisition and
processing of audio and video streams for analyzing and recognizing
activities of daily life (ADL) [5][6][7]. Recognizing the emotional status of
patients and the identification of emergency situations, such as the
detection of falls, are also of high importance [8][9][10]. As a result, the
main processing engine(s) of robot are designed to operate as a power-
efficient architecture for streaming data processing.

Apart from the FPGA fabric, the Xilinx PicoZed platform includes also an
ARM Cortex A9 dual core processor (equipped with a Neon co-processor)
interfaced with programmable logic.

4. Fast and Energy Efficient Data Processing

Figure 7.1 illustrates two different scenarios of positioning the robot
processing elements and their interfaces. In both cases, the bulk of
processing is indented to be performed on the FPGA platform. However,
the two scenarios differ in the points where the sources of audio



(microphone) and visual (camera) streams are located. The advantages
and disadvantages of each scenario are analysed in the rest of this
section. In any case, the camera and audio data streams will be
continuously monitored and when activity is detected the corresponding
algorithms (which can analyse and recognise the activity) will be
triggered. Depending on the specific combination of algorithms that get
triggered, some or all computational tasks may be executed in the NUC, in
the Zynq ARM processor, or accelerated with fixed logic or reconfigurable
hardware components inserted in the FPGA reprogrammable logic.
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Figure 7.1: Diagram illustrating two different scenarios of the data flow
between the RADIO robot, gateway, and IoT platform



In the second scenario depicted in Figure 7.1, the camera and audio data
streams, as provided through the NUC, will be continuously monitored by
the processing elements of the FPGA platform. Therefore, a pipe that
brings the streams down on the FPGA platform is implemented on the
NUC using ROS channels. To avoid overloading the interface with
unnecessary memory transfers, the ROS channels are constructed so that
image and audio data is provided to the FPGA platform on a need-to-
know basis. When the captured image data are transferred to the FPGA
device (through ROS messages), the RAM which resides on board will be
directly accessible from both the dual ARM core and the FPGA fabric (to
minimize on-board memory transfers).

Figure 7.1 illustrates the streaming data flow through the robot
processing elements and their interfaces. The camera and audio data
streams are continuously monitored and when activity is detected the
corresponding algorithms (which can analyze and recognize the activity)
are triggered.

Depending on the specific combination of algorithms that get triggered,
some or all computational tasks may be executed in the i) NUC, ii) Zynq
ARM processor, or iii) accelerated by hardware components in the FPGA.

To provide a specific example of this concept, we describe here the
implementation for the algorithm used in ADL “Measure time to get out
of bed”. Data processing with this algorithm consists of following
(simplified) steps:

- For each Frame
o Store frame in RAM to be used as “previous” in
next iteration
o Split Frame in blocks of 9x9 pixels
o Compare blocks with “previous frame” blocks to
detect difference
0 Get bounding rectangle of all different blocks
Get centre of all different blocks
o Check bounding rectangle and centre against the
set limits
0 Report any events / findings

o



To optimise these steps, we modify the execution order and assign to
various blocks on the above architecture as follows:

e For each frame (row 1 to row 469)
o0 Get next 9 rows [Camera -> Video Stream -> NUC -
> ARM]
o For each row:
= Split in 9x9 blocks [ARM->OnBoardRAM]
= For each block:
e Read 9x9 [OnBoardRAM->FPGA]

e Compare and store “previous”
[FPGA]

e Report per-block result [FPGA-
>ARM]

o Calculate Bounding and Centre [ARM]
0 Report to NUC [ARM->NUC]

This simplified example illustrates how a method can be adapted to fit the
specific requirements of the architecture, achieving optimized memory
transfer, speed, and power consumption.

The potential benefits inherently offered by the first scenario (illustrated
in Figure 7.1) are further analysed below.

4.1. Concept within the distributed RADIO environment

The need for fast and efficient processing of the data streams in the
distributed RADIO environment comes from the need to be:

e Responsive: in some cases, the data collected on the robot and
the measured/detected quantities and events are correlated
centrally with data from the smart home sensors or other
sources. For example, detection of exiting the room can be
correlated with a motion sensor mounted on the room walls

e Energy Efficient: as the robot relies on battery, data processing
should be limited to what is necessary and executed on the node
yielding the lowest overall power consumption



To put this into perspective, an example state-diagram of the robot is

presented in Figure 7.2.
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Figure 7.2: State diagram highlighting different (power) modes

In this diagram, we have two points (in green fonts) where entering is
triggered by the smart-home infrastructure through getting the event
from a motion sensor. There are also a number of states that involve
heavy data processing and we have to ensure that this is either:

e very low power
0 time needed to stand up (gym)
0 measure walking speed (gym)
o follow the person
0 guiding or going to a place
or
e executed when the robot is stationed on its charging station
0 time needed to stand up (in the room)
0 measure walking speed (in the room)



4.2. Modeling the operational states of the AAL robot

The RADIO robot is a unit which has many energy-hungry subsystems.
These are:

e Main processor to control robot movement (NUC)
e FPGA to accelerate ADL recognition methods

e Sensors, especially the image sensor (camera)

e Mechanical subsystem (motors)

e Wireless subsystem (network)

Table 1.1: Robot Subsystem Energy Usage

Not Not

Not

Waiting Used used used used Used
Moving Used Used Used Used Used
Monitoring Used Used Used Not Used
/Away used
Momtqrmg/ Used Used Used Not Used
Changing used

If all subsystems are always active, the RADIO robot needs to be
recharged every few hours, which results in long periods of robot non-
availability. As a first step, we had to understand how each subsystem is
used and if it, indeed, needs to be active at each use case. Table 7.1
provides an overview, assuming that robot activity can be classified in the
following states:

e Waiting: at this state, the robot is not moving; neither is it
processing sensor data. At this point, the robot is waiting to be
triggered by some external event

e Moving: when leading the way or following a person



e Monitoring: at this state, the robot is not moving, but it is
processing sensor input data in order to detect an ADL or
understand patient’s mood

For some of these states, there is a difference on whether the robot is on
its charging station or away of it e.g., in another room.

Table 2.2: Energy profile by using HW accelerator

On Not Not On

Waiting demand itz used used demand
Moving Used Used Used Used Used
Monitoring On Not On
/Away demand Wit e used demand
Monltqung/ Used Used Used Not Used
Changing used

A more detailed description of the cases is illustrated below:

e  Waiting State: The FPGA can connect only to an ultra-low power
wireless scanning device. When the user or any other RADIO
system wants to instruct the robot, it should first connect to this
device, and send a handshake command. This command is
interpreted by the FPGA. For example, it can be used to turn-on
the CPU and perform a simple action. If more complex control is
needed, e.g. a user request via the tablet GUI, the CPU will turn
on the network subsystem.

e Monitoring/Away State: At this state the FPGA gets triggered by
external events or continuously monitors live sensor signals. Only
when some (external or sensor) activity occurs, the HW
component in the FPGA will pre-process it and decide whether
the CPU or/and the network subsystem has to be turned on.

e Monitoring/Charging and Moving States: At these states we may
not need to employ any on-demand approach for the CPU and/or



the network. However, having the dedicated hardware
components in the FPGA will allow some of the processing to be
offloaded there, which also yields considerable energy benefits.

The energy consumed at each state by each subsystem is not the same.
For example, the CPU while waiting can be clocked at lower frequency,
drastically reducing the required power. Also, sensors and FPGA can
perform only basic data capture and processing when monitoring away
from the charging dock and revert to full-power processing mode when
this power is available.

Although a number of such techniques are used, their impact on power
consumption is not drastic in all cases. To cope with this problem, our
view is to develop dedicated hardware components that allow the robot
to turn-off complete subsystems in some cases; turning them on only on
demand and just for the short period when they are really needed. The
goal is to have an improved energy profile. The results of this analysis are
depicted in Table 7.2.

4.3. The role of a dedicated HW component

A HW accelerator component is a specially designed circuit which is
implemented in FPGA (for configurability and future upgradability) and is
connected directly to the other subsystems. The component is processing
signals from sensors, so that simple decisions on whether other
subsystems have to be employed or not can be devised. Typically, this
component is equipped with the following functionality:

e Triggering mechanism, which initiates sensor data capture and
processing

e local Memory, which holds processed sensor data so that the
main system RAM does not have to be used

e Signal processing acceleration functions in FPGA

e Control interfaces to turn-on and notify (or get notified by) other
subsystems
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In the context of RADIO, the dedicated HW components (see Section 6)
are implemented in the programmable logic (PL) of the Picozed APSoC
using the Vivado HLS (High-level Synthesis) tool. The accelerators are
optimized for performance and area and they proved flexible enough to
perform their role: early detection of a high-possibility for an event so
that SW-based processing can be invoked.

5. Experimental Profiling and Results
5.1. Example ADL use cases

To prototype and experiment with the alternative approach discussed in
this chapter, we selected a small number of ADLs as target use cases for
the monitoring state of the robot. The selected ADL recognition methods
must:

e Be able to be detected when the robot is not moving

e Have a significant part of pre-processing, which can be done on
the FPGA

e Get triggered by some external signal or some very simple HW-
only method

e Not rely on information exchanged over the WiFi or Smart-home
Network

The selected methods will be the ones which detect:

e The time that is needed by the patient to get out of bed. This ADL
is based on image processing algorithms that observe the patient
while getting out of bed. The image processing algorithms can be
parallelized availing themselves for the acceleration within the
FPGA hardware. This algorithm divides the image into different
regions. If the center of mass of moving pixels over succeeding
images lies in one of these defined regions, an event is triggered.
Thus, this algorithm is able to detect if a person is sleeping, awake
but not going out of bed and awake and standing up.



e Picking up medication cups. The image processing methods used
to detect this ADL benefit from the acceleration through the FPGA
hardware as they rely on a complex algorithm.

The acceleration does not involve the complete method; but rather
focuses on early detection of a high-possibility for an event so that SW-
based processing can be invoked. Specifically, for the above mentioned
ADLs:

e For the time-to-stand-up ADL, the hardware component will
collects and calculates data from all regions, providing a trigger to
software when a given activity threshold is crossed.

e For the cup-detection ADL, since this is manually triggered by the
operator, hardware acceleration is not related to the recognition
but to the stabilization and centering of the image. It has been
observed through field trials that the robot can slightly move
while waiting; a movement that might create false positives. An
always running HW component will be monitoring such small
movements and constantly re-center the view.

5.2. Optimizing for power

In order to determine the SW-HW co-design of the FPGA-ARM system,
extensive profiling of the image processing algorithms is needed (see
Section 6). Generally, FPGAs provide high-performance when
manipulating the images pixel-wise or in small blocks. This allows several
hardware implementations with different degrees of parallelism. Each
hardware design then must be evaluated within the overall RADIO
framework in order to determine the best implementation.

At the first phase of the project, our work was allocated to have a working
HW acceleration framework, and not to the specific optimization of each
HW component. In a subsequent phase, we profiled three options, so that
the expected benefits of various optimization approaches can be
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qguantified, allowing to focus on these solutions that will yield the most
benefits.

The three analyzed options — as described earlier— are:

e No offloading, all processing is performed on the robot’s main
processing unit (NUC)

e Offload on embedded ARM core of the FPGA (no HW acceleration)

e Offload on dedicated low-level hardware blocks in the FPGA (ARM
core can be power down)

5.3. Profiling on daily activity use cases

To make a realistic profiling, we identified typical activity use cases with
the help of non-technical partners of the RADIO consortium. Each typical
activity is depicted as a combination of five states for the robot
subsystem:

180
160
140

120

Energy Consumption (measured in mAH)

20

12.00 AM till 11.59 PM (every dot represents the energy i for a 15-mi iod)

Figure 7.3: Daily activity profile

e Moving, where the robot is actually moving and uses its motor,
sensors and camera

e Monitoring, where the robot is waiting for an event to be
triggered by what it can see

e Sensing, where the robot is using its onboard sensors or
communicates with smart home



e Processing, where heavy processing to analyze sensor and camera
input is required
e |dle, where the robot is on but is doing nothing of the above

It is important to understand that a specific human activity (e.g., having
lunch) will combine more than one of the above states (e.g., looking,
sensing, and processing).

By accumulating the energy needs at each activity, we are able to extract
the daily activity profile in terms of energy consumption as shown in
Figure 7.3. More specifically, the data presented in Figure 7.3 are
extracted by i) analyzing the daily activity patterns of the person(s) that is
being monitored during the whole day (24 hours) in their domestic
environment and ii) conducting live measurements to calculate the
energy consumed in each discrete phase of the robot (consequently in
each activity of the target person) assuming that all data processing in
performed in NUC. Finally, we should mention that the daily activity
patterns were collected by personal care-givers during the third pilot
phase of the RADIO project and represent the (averaged) activity patterns
of three persons.

5.4. Power-savings results

The three options analyzed in the previous section are then tested on the
profile illustrated in Figure 7.3. Our target is to reveal the potential for
maximizing battery life in terms of reducing the required re-charges
during the day; in other words, to increase the autonomy of the AAL
robot by using specialized hardware accelerators. The target areas are the
points located in the lower part of Figure 7.3 (juxtaposed the x-axis).
These points correspond to the cases in which the robot is either in the
sensing or idle state waiting for an event to occur.

To this end, we performed a battery load calculation and our results are
presented in Figure 7.4. The vertical axis in Figure 7.4 shows the battery
level of the robotic platform, whereas the horizontal axis represents the
day-time period (every dot point in the lines is associated to a battery-
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level measurement taken every 15-minutes). There are three lines in the
figure corresponding to the three studied offloading policies: i) no offload
(green line), ii) offload on the embedded ARM core of the FPGA platform
(blue line), and iii) offload on dedicated low-level hardware blocks in the
FPGA (red line). Finally, in all cases, the sharp ramp-ups indicate the

"~

battery charging periods.

100% |
80% -
60% -

40% |

Battery Level

20% -

0% 5 -
‘{ 12.00 AM till 11.59 PM (every dot represents a measurement taken every 15-minutes)i

—=No offloading; all processing is performed on main unit (NUC)
—=Q0ffload on embedded ARM core (no HW acceleration)
Offload on dedicated low-level hardware blocks inthe FPGA

Figure 7.4: Run-time depletion of robot battery and number of required charges
for the three studied offloading policies

As Figure 7.4 indicates, our offloading policies are able to significantly
increase the autonomy of the robot. In our setup, the time required to
charge the battery (from depletion to full capacity) is a 2-hours period. As
a result, in the “no-offloading” case, for a time-window equal to 4-hours,
the robot is not able to operate, thus it cannot follow the person to
another room or most importantly it might miss capturing important data
that are relevant to a critical situation or emergency. In addition, the
charging periods coincide with periods of increased activity (as indicated
by the results presented in Figure 7.3). On the contrary, our offloading
policies (e.g., when the wake-up decision logic is implemented in the
FPGA) manage to reduce the number of the required charges to one and
to actually move the charging period to a time-slot of reduced activity.



6. Accelerating Image Processing Algorithms

The algorithm for monitoring the state of the patient is based on center

of gravity calculation and can be divided into 4 to 5 parts, depending on

whether mark ups are activated or not. Figure 7.5: 7.5 shows the general
functionality of the algorithm as schematic and as pseudocode.

1.

Reading of the most recent image frame: The image data is
provided by the Asus Xtion Pro camera of the RADIO robot
platform. The image data is sent via USB directly to the NUC
which publishes the received frames via its robot operating
system to the Avnet Picozed where it is processed. The image
frame is then read by the software and saved to a 3-dimensional
array. The first two dimensions indicate the pixels positions
whereas the third dimension stores the color values of the RGB
color channel. Each color is coded with 8 bit, resulting 24 bit color
payload. Given that the Asus Xtion Pro camera provides images
with the size of 640x480 pixels, the resulting array size is
640x480-3 = 921600 or 900 KiB.

Detection of movement: The algorithm loads to subsequent
frames and compares both image frames with each other in order
to detect changes or movement within the two image frames. In
order to reduce the impact of small movements of the camera or
image noise, the comparison does not only take place on the
subtracted image, but rather on blocks of pixels. Within these
blocks the mean value of all subtracted color channels is
calculated. If this value exceeds a certain threshold, the
respective block is flagged as active to show that a change has
occurred. While the person is moving out of the bed, the pixel
blocks that detect movement are highlighted in red.

Calculation of center of gravity: After all blocks have either been
detected as active or inactive, the center of gravity can be
calculated. In this case, the center of gravity is calculated through
the mean value of the positions of all active blocks. Because the
active blocks are positioned in the middle of the image and in the
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lower right corner of the image, the center of gravity lies directly
in the between of the detected hotspots of movement.

Evaluation of center of gravity: Now that the position of the
center of gravity has been determined, its position needs to be
analyzed and interpreted. If the y coordinate of the center of
gravity exceeds a certain threshold, the algorithm assumes that
the observed person has gotten out of bed. Several of these
thresholds exist.

Drawing mark ups: In order to optimize and help debug the
algorithm, markups can be drawn into the image. When drawing
markups, all color values which differ more than the value 40
compared to the prior frame are set to 70. If the pixels differ less
than 40, the color values are quartered. Additionally, the pixel
within an active block will be colored red. This is done by adding
the value 128 to the red channel. This calculation is saturated,
meaning that the resulting value never exceeds 255.
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6.1. Profiling results

In order to optimally accelerate the image processing algorithm with
programmable hardware, the compute intensive components need to be
identified. This is done with the help of profiling. The Picozed is a System
on Chip with a dual core ARM Cortex A9 processor and integrated
programmable hardware. The image processing algorithm is first
executed on the ARM processor. There, the performance of the algorithm
is determined and the potential hardware accelerated components are
identified. From the software side, the algorithm consists of several
subblocks which are further analyzed during the profiling. These are
described in Table 3.3: Subblock of the algorithm

7.3.

Table 3.3: Subblock of the algorithm

Profiled functions of the algorithm

Function name Task

Copy the received image data to a 3-

copyToRGB dimensional array

Calculate the mean value of the color value
Checkboxes differences over the last 2 frames and
indicate the active blocks.

If markups are activated, indicate the pixel

annotateBoxes changes and highlight the active blocks.

Calculates the center of gravity and
process_function determines its position. This is the function
that calls checkBoxes and annotateBoxes.

Copy the processed image data from the 3-
copyTolmageData dimensional array to a ROS compatible array
for debug purposes.

For each profiling run, the algorithm is executed 20 times in order to
mitigate the impact of outliers. The used profiler is gprof and the results
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are presented in Figure 7. for the algorithm with markups and in Figure
7.7: for the algorithm without markups.

% cumulative self self total
time seconds seconds calls ms/call ms/call name
61.70 2.32 2.32 61440 0.04 0.04 checkBoxes
17.02 2.96 0.64 20 32.00 32.00 copyIcImageData
16.49 3.58 0.62 20 31.00 31.00 copyToRGB

3.72 3.72 0.14 13199 0.01 0.01 annotateBoxes
1.06 3.76 0.04 20 2.00 125.00 p:ocess_f:nct:cn

Figure 7.6: Profiling results of the algortihm with activated markups

% cumulative self self total
time seconds seconds calls ms/call ms/call name
51.29 1.39 1.39 61440 0.02 0.02 checkBoxes
26.57 2.311 0.72 20 36.00 36.00 copyToImageData
21.03 2.68 0.57 20 28.50 28.50 copyIoRGB
0.74 2.70 0.02 20 1.00 70.50 process function

Figure 7.7: Profiling results of the algorithm without activated markups

As can be seen in both figures, the algorithm spends most of total
processing time in the checkBoxes function. In the case with activated
markups, the amount is 61.70% and 51.20% without activated markups.
Because the copyTolmageData function is only required for debug
purposes, this function will not be implemented in the final algorithm
design. Therefore, the timing value for this function is ignored. In the case
of activated markups, all the data required for the annotateBoxes
function is generated by the checkBoxes function. Because both functions
are executed sequentially, it is possible to generate hardware
accelerators for both functions.

6.2. Hardware accelerator design

In order to efficiently switch between the algorithm with and without
markup functionality, two OpenCL kernels are designed. This enables an
efficient implementation of only one query in order to determine which
kernel version will be executed. OpenCL kernels consist of workgroups
and workitems. In this case, a workgroup stands for one pixel block and a
workitem stands for one pixel. The designed kernel will then be called
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640x480=307200 times for each pixel pair. The first step is to calculate
the difference of all color values of each pixel pair in a workgroup. If the
differential value exceeds the value 40, the pixel value is set to 70,
otherwise the value is divided by 4. As soon as each workitem of a
workgroup completes the differential calculation, the first workitem of
the workgroup will calculate the mean value of all workitems. The mean
value is then saved to an external array which is accessible by the CPU for
further processing. If the mean value exceeds the threshold value of 30,
the block will be highlighted in red. Figure 7.8: shows the kernel
implementation as schematic and as pseudocode.

RGB-Array 1 RGB-Array 2

Loop column-wise over all pixels per block

if block is active:
Loop column-wise over all pixels per block

\

RGB-Array 1
with mark-ups

Array with
differential
mean values

Figure 7.8: Depiction of the implemented algorithm
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The initial version of the OpenCL code can be generated with 100 MHz.
Figure 7.9 shows the resource requirements of the initial hardware
version. This core is compared to a software implementation on the dual
core processor of the Picozed. The execution time of the algorithm on
software takes approximately 17547 pus. The generated hardware requires
88404 us, meaning the hardware accelerator requires 88404 us or (at 100
MHz) 8840400 cycles to execute the algorithm. This results in a speedup
of 0.2. In order to achieve an accelerator which actually accelerates the
image processing algorithm, further optimization steps have to be
executed.

Name BRAM_18K  DSP48E FF LUT
DSP - - - -
Expression - - 0 1827
FIFO - - - -
Instance 2 4 662 812
Memory - - - -
Multiplexer - - - 2599
Register - - 2160 -
Total 2 4 2822 5238
Available 280 220 106400 53200
Utilization (%) ~0 1 2 9

Figure 7.9: Resource utilization of the initial OpenCL kernel

The first optimization step is to efficiently let the accelerator read the
image data from the DDR memory. This is done with the command
async_work_group_copy. This command transmits a user defined number
of sequential bytes from memory via a burst mode to the accelerator. The
transmission of one frame is executed stepwise in order to reduce the
resource usage of the BRAM on the programmable hardware. Because
one image always lies sequentially in memory, only one transmission
command per frame is required. After this step, the estimate cycles to
complete the algorithm are in a range from 4729607 - 5712647 cycles,
which means a performance improvement of 36% - 46% compared to the
initial implementation. This performance improvement however comes at
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the cost of an increased resource utilization as can be seen in Figure 7.10:.
Here, the number of used BRAM blocks has increased from 2 to 74 while
all other resources remain almost constant.

Name BRAM_18K  DSP48E FF LuT
DsP - - - -
Expression - - 0 1591
FIFO - - - 5
Instance 2 4 662 812
Memory 72 - 0 0
Multiplexer - - - 1340
Register - - 1786 150
Total 74 - 2448 = 3893
Available 280 220 106400 53200
Utilization (%) 26 1 2 7

Figure 7.10: Resource utilization of the OpenCL kernel after optimizing the data
access

Because the number of required BRAMSs is very high, the memory
requirements of the accelerator are reduced in the second optimization
step. Currently, every color value is transmitted as a 4 Byte value to the
BRAMs although a 1 Byte value would suffice. Therefore, all three color
values are stored in one 4 Byte value on the software side and then
transmitted to the accelerator. This reduces the data transmission by 2/3
from 14535 cycles to 4935 cycles. By performing this optimization, the
performance of the accelerator is increased while also reducing the
resource utilization. This is shown in Figure 7.11:. The number of BRAMs
is reduced from 74 to 42 and the LUT resource utilization is reduced by
2% compared to the first optimization. The estimated cycle number is also
further reduced to 2272007 - 2947847 cycles which is a performance
improvement of 52% compared to the first optimization step.
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Name BRAM_18K  DSP48E FF LuT
DsP - - - -
Expression - - 0 691
FIFO - - - -
Instance 2 B 662 812
Memory 40 - 0 0
Multiplexer - - - 1245
Register - - 1383 140
Total 42 4 2045 2888
Available 280 220 106400 53200
Utilization (%) 15 1 1 5

Figure 7.11: Resource utilization of the OpenCL kernel after optimizing memory
requirements

Since image processing algorithms perform many operations on each
pixel individually, these operation are executed in a loop. These loops can
be parallelized on hardware. Parallelizing a loop can be done through loop
pipelining or through loop unrolling. While loop pipelining reuses the
already available components for parallelization, loop unrolling requires
separate resources in order to increase the degree of parallelism.
Therefore, loop pipelining requires less additional resources than loop
unrolling. The algorithm has 5 loops that can benefit from either loop
unrolling or loop pipelining, see Figure 7.8:. In the case of this algorithm,
no performance difference is detected when using loop unrolling
compared to loop pipelining. Because loop pipelining requires less
hardware resources, loop pipelining is used for 2 of the 5 loops. In the
other 3 loops, no performance improvement was measured when
employing pipelining or unrolling techniques. Figure 7.12:shows the
resource utilization when employing loop pipelining for the algorithm.
Through loop pipelining, the resource requirements of the BRAMs are
reduced even further from 42 to 38. The number of DSP blocks is also
reduced from 4 to 1 and the FFs are slightly increased as well as the LUT
resource usage. This optimization further increased the performance
compared to the last optimization step, leading to cycle number of
1273607 - 1586951 which is an acceleration of 44%-46%.
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Name BRAM_18K  DSP48E FF LuT
DsP - 1 - -
Expression - - 0 2142
FIFO - - - -
Instance 2 - 662 812
Memory 36 - 0 0
Multiplexer - - - 1344
Register - - 1927 140
Total 38 1 2589 4438
Available 280 220 106400 53200
Utilization (%) 13 ~0 2 8

Figure 7.12: Resource utilization of the OpenCL kernel after optimizing loop
executions

After these three optimization steps, the accelerator is again compared to
the software implementation of the algorithm.

6.3. Evaluation

In order to evaluate the performance of the accelerator on the real
hardware, the accelerator must first be implemented on the PicoZed
platform. This is done with the Vivado tool provided by Xilinx. The
accelerator must be connected to the processing system in order to
receive the image data from the DDR memory. Table 4.4: Energy profile by
using HW accelerator

7.4 shows the execution times of the different versions. For all
implementations, the clock frequency of 100 MHz is used. The ARM
processor is running at 666 MHz. It can be seen that the initial and up
until the second optimization hardware version, the software version
outperforms the hardware implementation. This changes in the third
optimization where the hardware implementation reaches a speedup of
1.32 compared to the software version. All hardware implementations
can further increase their performance compared to the software
implementation by increasing the clock frequency.
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Table 4.4: Energy profile by using HW accelerator

Execution times and Speedup compared to the Software implementation

Measurement platform Execution time Speedup
Software (ARM) 17547 ps 1
Initial Implementation 88404 us 0.2
First optimization 48687 us 0.37
Second Optimization 23401 ps 0.75
Third optimization 13290 ps 1.32

7. Summary

This chapter presents the system-level approach followed in the RADIO
project targeting to increase the autonomy (measured in terms of battery
charges) of the robotic platform in AAL environments. The proposed
approach is benchmarked in experimental conditions via use case
profiling and it is driven by the daily activity patterns of the target elderly
or disable people. The daily activity patterns were collected by care-givers
personnel during the third pilot phase of the RADIO project. As part of
this, a general behaviour concept is presented in this book chapter, which
allows the robot to switch between extremely low power states and
active state when necessary based on user behaviour.

Special emphasis is given to fully utilize the robot processing units in the
most efficient manner (APSoC with an ARM-based processing system and
a FPGA programmable logic). This enables the robot to perform
computation intensive tasks very efficiently and very fast. However, in
order to extract the most performance out of these processing units, all
tasks that need to be executed by the robot platform have to be analysed
and scheduled accordingly on the processing system or on the
programmable logic.
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Finally, the FPGA implementation of an image processing algorithm for
monitoring the state of the patient is also presented. All aspects of the
implementation are provided, while detailed statistics (FPGA resource
utilization and speedup) related to the efficiency of the FPGA acceleration
are also offered. The design of the accelerator followed the hardware-
software partitioning approach and it is based on the HLS (high-level-
synthesis) paradigm in order to reduce the programmability and
development effort.
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