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Abstract
This report describes the related data management processes concerning both technical related controls
to protect against respective privacy/security issues and attacks as well as data management procedures
aiming to defend the RADIO platform against soft issues such as information misuse and unauthorized
access.
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Executive Symmary
RADIO Home deployments interact and exchange data beyond the boundaries of the local network. Ac-
tually, it is envisaged that RADIO Home deployments will seamlessly integrate in the RADIO ecosystem
as nodes and collectively provide data mining capabilities to medical research institutions. The data ex-
change and processing between the entities of the RADIO ecosystem should employ techniques and
methods for preserving the privacy of the data and protecting the data for misuse and unauthorized
access.

This report describes techniques and methods for supporting a privacy preserving data mining system
that can, on one hand, collaboratively compute statistical values and on the other hand prevent the
leakage of private data outside the boundaries of a RADIO Home. Moreover, this report focuses on all
the related data management processes concerning both the technical related controls to project against
respective security issues as well as on data management procedures aiming to defend the RADIO
platform against information misuse and unauthorized access.
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Abbreviations and Acronyms
AAL Ambient Assisted Living
RASSP RADIO Secure Summation Protocol
REST API Representational state transfer applications programming interface
IoT Internet of Things
IPSec Internet Protocol Security is a protocol suite for secure IP
VPN Virtual Private Network
RPC Remote Procedure Call
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1 INTRODUCTION

1.1 Purpose and Scope

The purpose of this deliverable is to provide the methods and techniques for the management of the data
exchanged between the RADIO ecosystem entities in a privacy-preserving and secure way.

This deliverable will focus on all related data management processes concerning both technical related
controls to protect against respective privacy/security issues and attacks as well as data management
procedures aiming to defend the RADIO platform against soft issues such as information misuse, unau-
thorized access, accidental error etc.

The rest of the document is structured as follows. Section 2 discusses the state of the art on methods
for privacy preserving data mining and presents the health data mining system developed in RADIO.
Section 3 presents the RADIO privacy-preserving protocol that underlies the data mining system and
Section 4 presents the medical researcher’s interface to the data mining system. Section 5 discusses
techniques used to ensure the network security and methods for preventing unauthorized access to private
data.

1.2 Approach

Task 5.3 tackles all aspects of coordination and communication system emphasizing on security and pri-
vacy issues. Specifically this task will focus on data management processes concerning both technical
related controls to protect against respective privacy/security issues and attacks as well as data manage-
ment procedures aiming to defend the RADIO platform against soft security issues such as information
misuse, unauthorized access, accidental error etc. TWG leads this task, supported by NCSR-D and
AVN.

Task 5.4 develops and prototypes the methods needed by medical care institutions in order to aggregate
and interpret the detailed ADL and mood recognition results into trends and averages at the right level
of abstraction for inspection by medical personnel. The main considerations are scalability, privacy
preservation and access to information on a need-to-know basis.

NCSR-D leads this task and contributes with large-scale and privacy-preserving data management at the
medical care institutions site.

1
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Figure 1: Dependencies between this deliverable and other deliverables.

1.3 Relation to other Work Packages and Deliverables

This deliverable is informed from D5.2 Architecture of the RADIO Ecosystem II about the architecture
of the RADIO ecosystem.

This deliverable provides to D5.8 Integrated RADIO prototype the prototypes of the techniques and
algorithms developed for large-scale and privacy-preserving data management. In its turn, D5.3 provides
the requirements of the RADIO ecosystem architecture for the next iteration of D5.7 Large-scale and
privacy-preserving data fusion and interpretation II.

This deliverable will be the basis for D5.7 Large-scale and privacy-preserving data fusion and interpre-
tation II.

2
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2 THE RADIO DATA MINING SYSTEM

The insights gained by the large-scale analysis of health-related data can have an enormous impact
in public health and medical research, but access to such personal and sensitive data poses serious
privacy implications for the data provider and a heavy data security and administrative burden on the data
consumer. The discussion on what exactly it means to not disclose private data [4] and the discussion on
policies for balancing between scientific advancement and privacy [6] are very relevant, but should be
complemented by the equally relevant discussion of whether there is tension at all between data privacy
and data-driven research. In other words, it is not straightforward if private data can be insulated from
medical research workflows without compromising either.

As anonymization has been repeatedly proven to be inadequate [13], attention has turned to research in
cryptography and distributed computation. These fields can provide methods for computing aggregates
and statistics without revealing the specific data values involved in the computation, offering a much
stronger guarantee of privacy than anonymization. However, from the perspective of the data mining
practitioners and the medical researchers there is still a residue of functionality missing between their
workflows over anonymized data and what is technically possible to achieve without accessing specific
datapoints.

The scope of our discussion here is restricted to the data and processing required to empirically validate
an already formulated hypothesis over a larger dataset than what can reasonably be made available to
research. Naturally, part of the researchers’ workflow involves browsing data in order to formulate
a hypothesis. This initial hypothesis formulation remains in the scope of smaller experimental data
specifically collected and licensed to be shared.

2.1 Entities

To make this more concrete, we will assume use cases from ambient assisted living (AAL) environments.
AAL covers a wide range of concepts, hardware and software products, and services that facilitate
better, healthier and safer life outside formal health-care institutions. These environments emphasise the
automatic collection of health data in one’s own environment and the secure sharing of such data with
medical care providers. In such a system, health data is shared between the following entities:

• The AAL agent that is the data management component of the AAL environment. The AAL agent
has unrestricted access to its user’s sensitive data. The management and security of the data held
by the AAL agent is primarily within the scope of network security.

• The health-care provider that needs access to sensitive data of a small set of individuals on a
need-to-know basis, depending on the medical condition that necessitates the monitoring of each
individual. The management and security of the data held by the health-care provider is primarily
within the scope of network security and access control.

• The medical researcher that needs access to aggregate values computed over the sensitive data of
a large set of individuals, but does not need to know any specific individual’s data. It is the data
transfer protocols between this agent and the AAL agents that are within the scope of the work
described here.

2.2 Related Work

We see in the literature three major approaches to privacy-preserving computation: differential privacy,
homomorphic encryption, and secure multiparty computation. Differential privacy is based on the prop-
erty that a result of a statistical value can be approximated even if random noise has been added to
the data. Homomorphic encryption supports computations over cipher-texts, so that the result can be
obtained without decrypting individual datapoints. Finally, secure multiparty computation is based on

3
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communication protocols between the agents to collaboratively compute a function over their private
values without revealing the actual values.

Differential privacy preserves privacy by perturbing the datasets with randomized noise, such as sym-
metric exponential (Laplace) noise or with a use of a Geometric Distribution [16]. When the perturbed
datasets are used in statistical analysis, knowledge of the distribution parameters of the noise applied
allows approximating the analysis outcomes over the unperturbed data, but does not allow recovering
any of the individual datapoints. To name an example, the PINQ data analysis platform [11] creates a
differential privacy layer between the raw data and data analysis software. PINQ supplies the analyst
with a set of transformations in operations like Where, Select, GroupBy and Join, in order to apply them
to the data-set before applying operations for differential-privacy aggregations.

What should be noted about differential privacy is that it provides approximations and is only applicable
where this is tolerated and where the datasets are large enough to allow for this approximation to be
accurate enough for its purpose. In the the analysis for medical data, it is often the case that datasets are
not large enough to give tolerable error margins or that outliers can lead to important insights and should
be highlighted rather than smoothed out.

The second major strain of privacy-aware computation protocols is based on homomorphic cryptosys-
tems, cryptographic mechanisms with the property that certain operators (such as addition) can be com-
puted directly within the encrypted space without requiring that the individual operands can be de-
crypted. One of the most prominent homomorphic cryptosystems is Paillier’s cryptosystem [14], which
allows computing the cipher of the sum of two numbers given the ciphers of these numbers. Paillier’s
cryptosystem requires that all numbers are encrypted using derivatives of the public part of a master key;
these derivatives are such that they cannot decrypt the cipher of other derivative keys, but the master key
can decrypt the cipher of the sum. This algorithmic basis can be extended to provide further numerical
and categorical operators beyond summation; for example Kissner and Song [10] proposed an extension
that supports union, intersection and element reduction.

Although data providers are perfectly protected from their peers, the main weakness of homomorphic
systems is the trust that must be placed on the entity that issues the master key [9]. The typical summa-
tion protocol based on Paillier’s cryptosystem has a master agent issue a master key and a number of data
agents that exchange their encrypted values between them in order to send a total encrypted summation
back to the master agent. Privacy from the master agent is only guaranteed by the fact the master agent
only receives the cipher of the end-result. If the master agent colludes with one malicious data agent,
they can use the private part of the master key to reveal the private value of the victim agent, the data
agent that passes its encrypted data to the malicious agent.

To lift the requirement that the master agent must be trusted, Shi et al. [16] proposed a framework that
can compute statistics on medical data with the use of an untrusted data aggregator, by encrypting values
that can be decrypted with the sum of multiple cipher-texts under different user keys. Shi et al. propose a
method where each agent encrypts periodically its data with its respective private key. The data of every
agent includes its private value combined with white noise. The untrusted aggregator receives all the
encrypted values from the agents and decrypts them with its private key and with the use of a correlation
between the private keys of all agents and a specific hash function, that is based on the time series. The
algorithm needs an initial trusted setup phase, which does not allow agents to join or leave the system
dynamically. The proposed protocol is based on differential privacy and as an implication the resulted
statistic is an approximation of the real one, which may cause problems in medical data. Moreover, as
authors report, in order for their approach to work efficiently, the plain text space should be small.

There are many studies that combine their secure mechanism with the use of a trusted third party that
works as the aggregator. In trusted third party protocols, there is an external trusted party which receives
the private data of the agents and computes a function by using them. Hanmanthu et al. [5] propose
an enhanced protocol that combines a technique which perturbs distributed data with the use of a third
party. Specifically, they define a protocol for constructing a Naive Bayes classifier. In this protocol, each

4
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agent encrypts its perturbed data with its private key and sends it to a trusted third party. The trusted
third party decrypts this data with the public key of the respective agent and constructs a perturbed Naive
Bayes Classifier. Moreover, there are some studies that combine secure multiparty computation (SMC)
systems with a trusted third party. Generally speaking, an SMC system deals with the computation of
any function with any input in a distributed network, where the involved agents can learn only the total
result and their own input. Thus, a common strategy to ensure trustworthiness is the use of a trusted third
party. Ajmani et al. [1] present TEP, a trusted third party computation service that maintains generality.
TEP offers flexibility because it fits in many SMC applications to guarantee privacy. However, this
type of mechanism requires the existence of a trusted third party, so is inherently weaker than purely
peer-to-peer networks.

Nevertheless, Sheikh et al. [15] proposed a SMC system that applies a secure summation protocol with-
out the use of a trusted third party. The proposed protocol focuses on the increased computation com-
plexity to avoid hacking. Each agent splits its data to a fixed number of segments and promotes a single
segment to the next agent at each iteration. As an extension Sheikh et al. [15] define a master agent,
which sets a random number during the initialization. Despite the fact that this protocol does not utilize
a third trusted party, it is weak because if two neighbour agents collude, they can reveal the data value
of the middle agent. Moreover, this technique imposes a considerable overhead in the communication
between the agents.

Many recent research studies focus on privacy preserving on vertical and on horizontal partition of data.
Our approach is oriented to horizontally distributed data, as each AAL agent keeps a private database
with its values and each database contains the same set of attributes. Specifically, Karr et al. [7] propose
a secure computation of linear regression for horizontally partitioned data without the use of a trusted
third party. This is achieved by converting the linear regression equation to a summation form, where
the quantities of each summation involve attribute values of the same agency. To protect data from
the scope of the source and the values, they propose a SMC secure sum computation protocol. During
the initialization of the protocol, a master agent adds his private value with a random number, that
he previously produced, and forwards the summed value to the next agent. Each agent receives the
aggregated value from the previous agent and forwards it to the neighbor agent, after the addition of
his private value. The total summation result is returned back to the master agent, which removes his
random number. This protocol is weak mostly because a private value of an agent can be revealed by
the collusion of his neighbors. Also due to the circular mode of the algorithm, it can not be parallelised.

The study of Molina et al. [12] is closer to our approach. Specifically, they propose an application of
homomorphic encryption to compute basic statistics on aggregated medical data which also guarantee
the privacy of the medical data. Their SMC protocol preserves the privacy between the caregivers,
where each one computes statistics for their corresponding patients. This is achieved with a double
encryption, each one depending on a different public key — the public key of researcher and the public
key of a caregiver chosen randomly to work as the aggregator. This approach can be mapped well in
distributed systems because each caregiver can work in parallel to compute aggregates of their patients’
data. However, privacy is relatively weak as the researcher and the aggregator can collude to reveal the
plaintexts of each caregiver. Moreover, doubly homomorphic encryption schemes are not fully explored
to define which statistics can be determined.

2.3 System Architecture

The system architecture can be perceived as a stack of three layers and each layer depends on the func-
tionality provided from the layer at the lower stage. The upper layer, called the Medical Researcher’s
interface, accepts from the medical researcher the method with the initial parameters to be executed
by the system. The purpose of this interface is to provide a familiar environment to the researcher and
therefore in our current implementation this layer is developed in the R language.1 The initial param-
eters are transformed appropriately in order to be passed to the next layer, which is the Compilation

1Cf. https://www.r-project.org
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Figure 2: The system’s architecture

Layer. At that stage, the high-level parameters and commands of the statistical method are transformed
into low-level instruction for accessing the private databases of the agents. An instruction represents an
aggregation over a selection of data. Currently, the aggregation operation is summation. However, the
aggregations that are both feasible by the system and safe for preserving privacy depend on the secure
protocol used. These instructions will be eventually evaluated by the lowest layer of the architecture,
the Privacy Protocol Layer. Figure 2 depicts the system architecture and the information exchanged
between the layers.

2.3.1 The Compilation Layer

This layer is responsible for the communication between the two other layers. Specifically, it translates
the arguments of the secure statistic to a suitable format, thus it defines the appropriate data that are
going to be used for the statistic computation. Moreover, it converts the simple statistic equations to a
set of summations; a compatible format to achieve the secure summation protocol. Therefore, a set of
instructions is composed where each instruction represents a summation equation of the statistic with
the appropriate parameters set for its computation. During the execution, the compilation layer gives to
the privacy protocol layer a single instruction at a time and it receives its result. After the execution of
the whole set, it computes the statistic and the analysis parameters. The statistic result is sent back to
the Medical Researcher’s interface layer.

2.3.2 The Aggregation Protocol

This layer executes the privacy protocol between the AAL agents, To deal with the concurrent computa-
tion of each instruction, we model our agents as actors. Each actor makes the appropriate computations
with respect to the given instruction and its private data. These computations can easily be done since

6
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every AAL agent controls its corresponding health records. After the computation of the value, which
represents the initial secret, the privacy protocol is executed. The protocol may involve all the actors
to work collaboratively in order to compute the aggregation of their secrets without revealing the ac-
tual secrets to each other or the agent requesting the aggregation. The aggregated result is collected a
designated actor. The selection of such actor is irrelevant and can be done randomly. Our proposed
implementation for this layer is presented in more detail in Section 3.

2.3.3 Example

We will use a simple example to better demonstrate the proposed system. Suppose that a medical
researcher needs to run a t-test to assess whether the means of two groups are statistically different from
each other, that is to compute t in Eq. 1:

t =
X̄ − Ȳ√

|X|−1 σ2X + |Y |−1 σ2Y
(1)

where X and Y are the datapoints of the two groups, X̄ and Ȳ are their means, |X| and |Y | are their
cardinalities, and σ2X and σ2Y their variances.

Assume, for instance, that a researcher wants to test the effect of medicine M1 (Group 1) and medicine
M2 (Group 2) on blood pressure, with the further restriction that participants in Group 2 should be above
65 years old. A workflow using the R language would be:

• Select from a database the instances that match Group 1 criteria and store them in variable X

• Select from a database the instances that match Group 2 criteria and store them in variable Y

• Decide on the conditions of the T-test, such as the confidence level and alternation, and store them
in variable C

• Pass X,Y,C as arguments to an implementation of t-test

Our architecture allows this workflow to remain essentially unaffected, except for the contents of X and
Y . Instead of holding actual data arrays these now contain a representation of the Group 1 and Group 2
criteria, so that the selection can be executed in distributed manner. Using this representation, a privacy-
aware implementation of t-test can produce the exact same result as the conventional implementation,
except without ever accessing any individual data.

This representation declares a list of dependent variables and a list of eligibility criteria of the sample
groups, as a set of (variable, operator, value) tuples. In our example, we assign to X and Y the criteria
that we would have used to assign to them a value array if we had full access to the data:

• X = [("medicine",=,"M1")]

• Y = [("medicine",=,"M2"), ("age", >,"65")]

The compilation layer converts the t-test implementation into a set of instructions. Recall that each
instruction is an aggregation over the private data of each agent, under the given selection restrictions.
Table 1 defines the instructions needed to implement the t-test (Eq. 1), which is then implemented using
the following pseudo-code:

1. X = [("medicine",=,"M1")];
X is a representation of the secret values of all AAL agents where medicine M1 is used.

2. Y = [("medicine",=,"M1"), ("age", >,"65")];
Y is a representation of the secret values of all AAL agents where medicine M2 is used and age
is above 65.

3. N1 = add(X);N2 = add(Y );
N1 is the sum of the secret values X and N2 is the sum of the secret values Y .

7
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Function Definition

add(C)
∑

i si(C), where si(C) is the secret value of the

i-th AAL agent if condition C is satisfied, 0 otherwise

add2(C, k)
∑

i (si(C) + k)2, where k is a constant

and si(C) is same as above

cnt(C)
∑

i ci(C), where ci(C) is 1 if the i-th AAL agent

satisfies condition C, 0 otherwise.

Table 1: Characteristic instructions provided by the RASSP Protocol.

4. C1 = cnt(X);C2 = cnt(Y );
C1 is the number of AAL agents with non-zero values in X and C2 is the number of AAL agents
with non-zero values in Y .

5. X̄ = N1/C1; Ȳ = N2/C2;
This uses the values above to calculate means.

6. σ2X = add2(X,−X̄);σ2Y = add2(Y,−Ȳ );
This uses the values above to calculate variances.

7. T =
(
X̄ − Ȳ

)
/sqroot

(
σ2X/C1 + σ2Y /C2

)
;

Each instruction is executed with the use of the secure summation protocol, obtaining the aggregate
values specified in the instruction without obtaining the values themselves. From the perspective of
the R interface user, the t-test functions operate as if they had been passed the actual value matrices as
parameters.

2.4 Discussion

The proposed system architecture assumes that:

• The statistical analysis that is to be carried out can be implemented using the set of aggregation
instructions provided by the aggregation protocol. In other words the algorithm should not depend
on individual data points.

• A summation protocol exists that guarantees privacy.

The first assumption holds, since the most commonly used class of data mining algorithms can be ex-
pressed as an iteration of summation expressions [8]. If needed, categorical operators can be imple-
mented based on summation [10].

Regarding the second assumption, we will now proceed to discuss the summation protocols that can be
used in our architecture and, in Section 3, present the protocol we use in our reference implementation
of the architecture.

Most of the related studies guarantee their privacy by utilising encryption or differential privacy tech-
niques. These approaches do not fit in our problem, because we deal with medical history data that are
distributed across AAL agents. In homomorphic techniques, a master agent shares a public key with
the rest of the agents, in order to encrypt their data, and keeps a private key for the final decryption.
Such a mechanism is privately weak in the case of collaborative computations, because if the medi-
cal researcher (master agent) and one AAL agent collude, they can learn another AAL agent’s private
value. This makes the technical protocol weak, as it places a heavy burden on non-technical policies
and protocols to guarantee the integrity of the medical researcher. Since our main aim is to alleviate
the need for non-technical policies and protocols and to make it easier for medical researchers to run

8
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statistics over datapoint they are not meant to access directly, homomorphism encryption does not cover
our requirements.

In addition, differential privacy is also not applicable, from both the perspective of the medical researcher
as well as from that of the AAL agent. From the perspective of the medical researcher, differential
privacy computes approximations, which can be a problem as discussed in Section 2.2 above. From the
perspective of the AAL agent, the secret value can be approximated by its repeated querying, since a
different perturbation of the real secret needs to be computed for each query. The AAL agent cannot
produce a single perturbed value and use this for all queries, since it needs to be re-computed to follow
the distribution parameters requested by the medical researcher. This might be less of a problem in
time-series data (such as power grid data or traffic data), but can result in substantial information leaking
in static historical data, such as health records.

2.5 Implementation

The project’s source code is organized in three modules, each one implementing one of the layers in our
architecture:

• proto implements the aggregation protocol

• stats is the implementation of statistical analysis primitives over an aggregation protocol, and
implements the compilation layer

• RStats implements the R interface for the medical researcher over the compilation layer.

9
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3 THE PRIVACY PRESERVING PROTOCOL

The RADIO data mining system presented in Section 2 is unaware of the underlying privacy-preserving
protocol that it is using. In this chapter we will present the RASSP (RADIO Secure Summation Protocol)
that satisfies the requirements needed by the system to ensure privacy preservation.

The rest of the chapter is organized as follows. Section 3.1 provides a brief but necessary introduction of
the theoretical foundations of the privacy preserving protocol and the secret sharing schemes in general.
Section 3.2 builts on the theoretical foundations to construct a practical privacy-preserving protocol that
support summation as the core operation on the cluster of RADIO Homes.

3.1 Background

Secret sharing schemes divide a secret into many shares which can be distributed to n mutually sus-
picious agents. The initial secret can be revealed if any k of these n agents combine their shares. We
will call such schemes, (k, n)-threshold schemes. If such a scheme also possesses the homomorphism
property, then multiple secrets can be combined by direct computation only on the shares. Such schemes
are usually called composite secret sharing schemes [2].

More specifically, assume n mutually suspicious agents and each agent holds a secret si. The desired
computation is combination into a super-secret s under an operation⊕, namely s = s1⊕· · ·⊕sn. Using
a secret sharing scheme each si can be split into k shares di1 , . . . , dik such that given a known function
FI it is the case that:

si = FI(di1 , . . . dik)

We will say the (k, n) threshold scheme has the (⊕,⊗)-homomorphism property if whenever s =
FI(d1, . . . , dk) and s′ = FI(d′1, . . . d

′
k) then

s⊕ s′ = FI(d1 ⊗ d′1, . . . , dk ⊗ d′k)

The composition of the shares d1, d′1 yield a super-share d1⊗d′1. In other words, the (⊕,⊗)-homomorphism
property implies that the composition of the shares under the operator ⊗ are shares of the composition
under the operator ⊕.

Overall, the advantage of having a composite secret sharing scheme is that secret cannot be obtained,
only if k or more agents collude and combine their sub-shares. In addition, this protocol is suitable to
our approach from the AAL agent’s point of view, because it does not use a trusted third party or depends
on cryptographic assumptions, while at the same time it is k-secure. This approach represents a secure
summation protocol that can easily be applied to collaborative agent systems.

Based on this mathematical foundation, we will now proceed to present the RASSP protocol, a (+,+)-
homophorphic composite secret sharing scheme.

3.2 The RASSP Protocol

Assume that we have n AAL agents, where each one has its private value vi, i ∈ [1..n]. Each AAL
produces random breakdown of vi into n terms rij , j = 1..n such that vi =

∑n
j=1 rij . These terms are

computed by first producing n− 1 random terms rij , j = 1..i− 1, i+ 1..n and then setting

rii = vi −
∑

j∈[1..n]−{i}

rij

The rij terms are called sub-shares and are (except for rii) shared with the rest of the AAL agents, one
per agent. In this manner, each AAL agent shares n− 1 values and receives n− 1 values from the rest
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House1 
v1

-------------------------
r11 , r12, r13

House2 
v2

-------------------------
r21 , r22, r23

House3 
v3

-------------------------
r31 , r32, r33

r12

r13

r23r21

r32

r31

Y1 = (v1 - r12  - r13) + 

+ r31 + r21 

r11 r22 r33

Y2 = (v2 - r21 - r23) +

+ r32 + r12 

Y3 = (v3 - r31- r32)  

        + r13 + r23 

 Y1 + Y2 + Y3 = v1 + v2 + v3 Y1 + Y2 + Y3 = v1 + v2 + v3

Figure 3: The RASSP secure summation protocol.

of the AAL agents. The super-share Yi for each agent is defined as:

Yi = rii +
∑

k∈[1..n]−{i}

rki (2)

Notice how the super-share of AAL agent i is the sum of the sub-share that it has not shared and of all
the sub-shares that it has received from the other AAL agents. Finally, we define a function FI as the
sum of the super-shares:

FI(Y1, . . . , Yn) =
n∑

i=1

Yi (3)

It is straightforward to verify that FI(Y1, . . . , Yn) is equal to the sum of all secrets. It is also straight-
forward to verify that only random numbers and obscured data values are shared between AAL agents
and between AAL agents the researcher. Notice also that only if (n − 1) AAL agents collude to merge
their sub-shares can the private value of the n-th agent be revealed. Therefore, our system guarantees
(n− 1)-security.

Figure 3 gives an example of the above description for a system of three AAL agents. In this example
House1 has the private value v1 and produces three numbers: r11, r12, r13. Then, it shares r12 and
r13 with House2 and House3, keeping r11 hidden. House1 receives two numbers (r21, r31) from the
other AAL agents. In then shares the computed Y1, so that FI can be computed by summing all Yi.
FI(Y1, Y2, Y3) computes the sum of all three AAL agents’ secret values.

The described secure summation protocol is suitable for computing medical statistics and preserve pri-
vacy at the same time. The only constraint is that the resulted outcome is a sum of the private values,
thus the statistic equations should be converted in a summation form. The summation form results in
accurate values and not approximations, while simultaneously it can easily be parallelised [3]. Besides,
medical researchers typically use descriptive statistics which utilise numerical descriptors such as mean
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and standard deviation. These descriptors can easily be converted into a summation form, thus they can
be computed by our system.
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4 MEDICAL RESEARCHER’S INTERFACE

4.1 Implemented Statistics in RASSP

The statistics currently implemented in RASSP are shown in Table 2. What is important to note is that
our implementation of the statistical tests presents an interface identical to the standard R implementa-
tion of the t-test.2 The underlying difference is that the arguments in each function do not point to actual
data matrices but to instances of our structure, which hold the information needed by the compilation
layer in order to distribute the computation to the participating nodes. In the following section we go
through each one of the statistics implemented and provide examples of the syntax in RASSP.

Table 2: Current list of statistic implementations offered to medical researcher.

R Function Description

mean Mean (average)

var Variance

stdev Standard Deviation

normality Checks whether a sample follows a normal distribution

plotnorm Plots Gaussian distribution

ttest T test

anova Analysis of variance

cor Correlation Coefficient statistic

lr Simple Linear Regression statistic

chisq.test Chi-Square (Pearson’s method) Test statistic

4.2 Examples

4.2.1 Definition of dataset and parameters

We used as an example a dataset taken from http://www.cookbook-r.com/Statistical_
analysis/ANOVA/. This dataset contains measurements of the dependent variable (DV) ‘value’ for
30 participants, as well as information about the independent variables (IV) of Sex(Male or Female) and
Age(Young or Old). The within participants DV ‘value’ has two levels of time(Before and After) (IV).

In R this dataset would be defined as a table containing all the aforementioned variables. For use in
RASSP, the data for each participant are retained in the form of a JSON message.

{
"age": [ "old" ],
"sex": [ "F" ],
"value_time_before": [9.5],
"value_time_after": [7.1],
"value_time_avg": [8.3],
...

}

2Cf. http://www.statmethods.net/stats/ttest.html
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The arguments in RASSP methods are defined as lists of dependent variables or independent variables
as follows:

# GroupStat structures define groups based on IVs, e.g.:
group1 <- GroupStat(list(c("sex","=","F")))
group2 <- GroupStat(list(c("sex","=","M"), c("age","=","old")))
groupX <- GroupStat(list(c("time", "=", "before")))

#Parameters structures define lists on DVs and specify IV conditions/levels
methodParameters <- Parameters(list("value"), list(group1, group2))

4.2.2 mean(parameters)

Summary The mean value of the list described by parameters.

Arguments Parameters structure

Results A Double number that represents the mean result.

Example 1. Calculate the mean of the DV value time before, for all participants.

# Define the DV through the arguments of the Parameters
mParam <- Parameters(list("value_time_before"), NULL)
#Execute the secure statistic
mean(mParam)

Example 2. Calculate the mean of the DV value time before only for the male population (sex=M).

#Define IV condition
Group <- GroupStat(list(c("sex","=","M")))
#Define DV list for Group condition
meanParam <- Parameters(list("value_time_before"), list(Group))
#Execute the secure statistic
mean(meanParam)

4.2.3 var(parameters)

Summary The variance of the list described by parameters.

Arguments Parameters structure

Results A Double number that represents the variance result.

Example 3. Calculate the variance of the variable value time before only for the male population
(sex=M).

#Define IV condition
Group <- GroupStat(list( c("sex","=","M")))
#Define DV list for Group condition
varParam <- Parameters(list("value_time_before"), list(Group))
#Execute the secure statistic
var(varParam)

4.2.4 stdev(parameters)

Summary The standard deviation value of the list described by parameters.

14
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Arguments Parameters structure

Results A Double number that represents the standard deviation result.

Example 4. Calculate the standard deviation of the variable value time before only for the female
population (sex=F).

#Define IV condition
Group <- GroupStat(list(c("sex","=","F")))
#Define DV list for Group condition
stdParam <- Parameters(list("value_time_before"), list(Group))
#Execute the secure statistic
stdev(stdParam)

4.2.5 normality(parameters, conf.level)

Summary Checks whether a sample, that is described through params, follows a normal distribution
(D Agostino-Pearson omnibus method).

Arguments • Parameters structure;

• conf.level (default 0.95), which specifies the confidence level for the statistic.

Results Returns test statistic for skewness Zg1, for kurtosis Zg2, and the D Agostino-Pearson omnibus
pvalue https://brownmath.com/stat/shape.htm.

Example 5. Check whether the DV value time after follows a normal distribution for the female
population(sex=F).

#Define IV condition
Group <- GroupStat(list(c("sex", "=", "F")))
#Define DV list for Group condition
normParam <- Parameters(list("value_time_after"),list(Group))
#Execute the secure statistic
normality(normParam)

4.2.6 plotnorm(parameters)

Summary Plots the Gaussian distribution of a sample that is described by parameters

Arguments Parameters structure

Results • The plot of the normal distribution

• The mean and standard deviation of the distribution

Example 6. Plot the Gaussian distribution of the variable value time after for the female popu-
lation(sex=F).

#Define IV condition
Group <- GroupStat( list( c("sex", "=", "F") ))
#Define the list for Group condition
pltParam <- Parameters( list("value_time_after") , list(Group))
#Execute the secure statistic
plotnorm(pltParam)

4.2.7 ttest(parameters, alternative, mu, varEq, conf.level)

Summary The T-test statistic and the statistic’s attributes
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Arguments • Parameters structure for two sample groups

• alternative: A character string specifying the alternative hypothesis, must be one of
two.sided (default), greater or less. You can specify just the initial letter.

• mu: A double number indicating the difference in means and declares the Ho hypothesis.

• varEq: A logical variable indicating whether to treat the two variances as being equal. If
TRUE then the Student T-test is used otherwise the Welch (or Satterthwaite) approximation
to the degrees of freedom is used.

• conf.level: The confidence level of the interval.

Results The output of the T-test execution gives the t-test value, the p-value and the degrees
of freedom of the t-testdf.

Example 7. Test the hypothesis that that the DV value time before is significantly different be-
tween males and females.

#Define IV condition
Gr1 <- GroupStat(list( c("sex", "=", "M")))
Gr2 <- GroupStat(list( c("sex", "=", "F")))
#Define the DV list for Gr1 and Gr2 groups.
tParam <- Parameters(list("value_time_before"), list(Gr1, Gr2))
#Execute the secure statistic
ttest(tParam, varEq = FALSE)

To demonstrate the differences and similarities between RASSP interface and traditional R methods the
following listing accomplishes the same effect by loading the data from a single file and calling the
mean function from the standard R library.

Dataset <- read.table(header=TRUE, ’data.csv’)
t.test(Dataset["before"][sex=="F"],Dataset["before"][sex=="M"])

4.2.8 anova(parameters, method)

Summary The ANOVA statistic described by params. Regarding the method the following types can
be computed:

• One-Way Between participants ANOVA

• One-Way Within / Repeated ANOVA

• Mixed ANOVA

Arguments • A Parameters structure. The One-Way Between ANOVA as well as One-Way
Repeated ANOVA needs a single DV and at least two sample groups/conditions. On the
other hand, Mixed ANOVA needs a single DV and exactly two groups (the one describing
the sample groups and the other the conditions).

• method: The method of anova that will be applied; ’b’ is for one-way between subjects,
’r’ is for repeated measures (within participants and ’m’ for mixed anova

Results A set of resulted components (summary table) after the ANOVA execution, such as df, ssq,
ms, Fvalue, pvalue etc.

Example 8 (Between participants). Check the effect of sex=M/F on the DV value time before.
Firstly we should define the Parameters:
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#Define the two groups
Group1 <- GroupStat(list(c("sex", "=", "M")))
Group2 <- GroupStat(list(c("sex", "=", "F")))
#Define the DV list for Group1 and Group2 groups.
btwParam <- Parameters(list("value_time_before"), list(Group1, Group2))
#Execute the secure statistic
anova(btwParam, "b")

The following listing achieves the same using standard non privacy preserving ANOVA in R.

Dataset <- read.table(header=TRUE, ’data.csv’)
aov(before ˜ sex, data=Dataset)

Example 9 (Within Participants). Check the effect of time=before/after on the DV value.

#Define the two levels of time
Level1 <- GroupStat(list(c("time", "=", "before")))
Level2 <- GroupStat(list(c("time", "=", "after")))
#Define the DV list for Level1 and Level2 conditions.
repParam <- Parameters(list("value") , list(Level1, Level2))
#Execute the secure statistic
anova(repParam, "r")

The following listing achieves the same using standard non privacy preserving ANOVA in R.

Dataset <- read.table(header=TRUE, ’data.csv’)
aov(value ˜ time + Error(subject/time), data=DataSet)

Example 10 (Mixed). Run a 2x2 ANOVA, checking the effect of the within participants factor of
time=before/after and the between participants factor of sex=M/F on the DV value.

#Define Between and Within participant factors.
BPfactor <- GroupStat(list( c("sex", "=", "M"), c("sex", "=", "F")))
WPfactor <- GroupStat(list( c("time", "=", "before"), c("time", "=", "after

")))
#Define the DV list for between and within participant factors.
mixParam <- Parameters(list("value"), list(BPfactor, WPfactor))
#Execute the secure statistic
anova(mixParam, "m")

The following listing achieves the same using standard non privacy preserving ANOVA in R.

Dataset <- read.table(header=TRUE, ’data.csv’)
aov(value ˜ age*time + Error(subject/time), data=Dataset)

4.2.9 cor(parameters)

Summary Correlation Coefficient statistic.

Arguments A Parameters structure defining a dependent and an independent variable.

Results A Double number between the range [−1.0, 1.0], which denotes the linearly relation of the
two variables.
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Example 11. Calculate the correlation coefficient between value time before and value time after

#Define variables to be correlated.
corParam <- Parameters(list("value_time_before", "value_time_after"), NULL)
#Execute the secure statistic
cor(corParam)

The traditional R code for calculating the correlation coefficient will look like the following.

Dataset <- read.table(header=TRUE, ’data.csv’)
cor(Dataset["before"],Dataset["after"])

4.2.10 lr(parameters)

Summary Simple Linear Regression statistic, described by parameters. The statistic fits a straight line:
y = β1 + β0 ∗ x.

Arguments A Parameters structure defining one independent variable (x) (1st argument) and one
dependent variable(y) (2nd argument).

Results • The coefficients of the linear regression.

• The plot of the fitted model.

• Parameters of the statistics computation, such as xbar, ybar.

• Other output of related to model fitting, such as Sx, Sy, R2.

Example 12. linear regression model of value time after depending on value time before.

#Define Parameters structure.
lParam <- Parameters(list("value_time_before", "value_time_after"), NULL)
#Execute the secure statistic
lr(lParam)

The traditional R code for calculating the correlation coefficient will look like the following.

Dataset <- read.table(header=TRUE, ’data.csv’)
lm(formula = before ˜ $after, data=Dataset)

4.2.11 chisq.test(params)

Summary The Chi-Square (Pearson’s method) Test statistic, described by parameters.

Arguments A Parameters variable, which needs two sample groups, each one defining the cate-
gories of each attribute.

Results Analytics of the Pearson’s chi-square, such as df, X2, pvalue.
Example 13. We want to apply a chi-square test between the following two variables: sex (with cate-
gories M and F) and age (with categories old, young).

#Define Parameters structure. Notice that there is no DV in this occasion.

chiGr1 <- GroupStat(list(c("sex", "=", "M"), c("sex", "=", "F")))
chiGr2 <- GroupStat(list(c("age", "=", "old"), c("age", "=", "young")))
chiParam <- Parameters(list(), list(chiGr1,chiGr2))
#Execute the secure statistic
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chisq.test(chiParam)

The traditional R code for calculating the correlation coefficient will look like the following.

Dataset <- read.table(header=TRUE, ’data.csv’)
chisq.test(Dataset["sex"],Dataset["age"])

All the secure statistics are tested with the use of the given dataset, resulting in accurate values.

19



D5.6 - Large-scale and privacy-preserving data fusion and interpretation I

5 SYSTEM AND NETWORK SECURITY

This chapter presents the general requirements and guidelines that should be taken into account for the
project.

5.1 Data protection and Privacy

5.1.1 Data Protection Directive (Directive 95/46/EC)

The Data Protection Directive [D 95/45/EC] (officially Directive 95/46/EC on the protection of individ-
uals with regard to the processing of personal data and on the free movement of such data) is a European
Union directive which regulates the processing of personal data within the European Union. It is an
important component of EU privacy and human rights law.

Personal data are defined as:

Any information relating to an identified or identifiable natural person (‘data subject’); an
identifiable person is one who can be identified, directly or indirectly, in particular by ref-
erence to an identification number or to one or more factors specific to his physical, physi-
ological, mental, economic, cultural or social identity. (Art. 2a)

This definition is meant to be very broad. Data are ‘personal data’ when someone is able to link the
information to a person, even if the person holding the data cannot make this link. Some examples of
‘personal data’ are: address, credit card number, bank statements, criminal record, etc.

The notion processing means:

Any operation or set of operations which is performed upon personal data, whether or not
by automatic means, such as collection, recording, organization, storage, adaptation or al-
teration, retrieval, consultation, use, disclosure by transmission, dissemination or otherwise
making available, alignment or combination, blocking, erasure or destruction; (Art. 2b)

The responsibility for compliance rests on the shoulders of the ‘controller’, meaning the natural or
artificial person, public authority, agency or any other body which alone or jointly with others determines
the purposes and means of the processing of personal data (Art. 2d).

The data protection rules are applicable not only when the controller is established within the EU, but
whenever the controller uses equipment situated within the EU in order to process data (Art. 4). Con-
trollers from outside the EU, processing data in the EU, will have to follow data protection regulation.
In principle, any online business trading with EU citizens would process some personal data and would
be using equipment in the EU to process the data (i.e. the customer’s computer). As a consequence,
the website operator would have to comply with the European data protection rules. The directive was
written before the breakthrough of the Internet, and to date there is little jurisprudence on this subject.

5.1.2 Directive on Privacy and Electronic Communications (2002/58/EC)

Directive 2002/58/EC on Privacy and Electronic Communications, otherwise known as E-Privacy Di-
rective, is an EU directive on data protection and privacy in the digital age. It presents a continuation
of earlier efforts, most directly the Data Protection Directive. It deals with the regulation of a number
of important issues such as confidentiality of information, treatment of traffic data, spam and cookies.
This Directive has been amended by Directive 2009/136, which introduces several changes, especially
in what concerns cookies, that are now subject to prior consent.

The first general obligation in the Directive is to provide security of services. The addressees are
providers of electronic communications services. This obligation also includes the duty to inform the
subscribers whenever there is a particular risk, such as a virus or other malware attack.
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The second general obligation is for the confidentiality of information to be maintained. The addressees
are Member States, who should prohibit listening, tapping, storage or other kinds of interception or
surveillance of communication and ‘related traffic’, unless the users have given their consent or condi-
tions of Article 15(1) have been fulfilled.

Data retention and other issues The directive obliges the providers of services to erase or anonymize
the traffic data processed when no longer needed, unless the conditions from Article 15 have been
fulfilled. Retention is allowed for billing purposes but only as long as the statute of limitations allows
the payment to be lawfully pursued. Data may be retained upon a user’s consent for marketing and
value-added services. For both previous uses, the data subject must be informed why and for how long
the data is being processed.

Subscribers have the right to non-itemised billing. Likewise, the users must be able to opt out of calling-
line identification.

Where data relating to location of users or other traffic can be processed, Article 9 provides that this
will only be permitted if such data is anonymized, where users have given consent, or for provision of
value-added services. Like in the previous case, users must be informed beforehand of the character of
information collected and have the option to opt out.

Spam Article 13 prohibits the use of email addresses for marketing purposes. The Directive estab-
lishes the opt-in regime, where unsolicited emails may be sent only with prior agreement of the recipi-
ent. A natural or legal person who initially collects address data in the context of the sale of a product
or service, has the right to use it for commercial purposes provided the customers have a prior opportu-
nity to reject such communication, either where it was initially collected or subsequently. Member States
have the obligation to ensure that unsolicited communication will be prohibited, except in circumstances
given in Article 13.

Two categories of emails (or communication in general) will also be excluded from the scope of the
prohibition. The first is the exception for existing customer relationships and the second for marketing
of similar products and services. The sending of unsolicited text messages, either in the form of SMS
messages, push mail messages or any similar format designed for consumer portable devices (mobile
phones, PDAs) also falls under the prohibition of Article 13.

Cookies The Directive provision applicable to cookies is Article 5(3). Recital 25 of the Preamble
recognizes the importance and usefulness of cookies for the functioning of modern Internet and directly
relates Article 5(3) to them but Recital 24 also warns of the danger that such instruments may present
to privacy. The change in the law does not affect all types of cookies. For cookies that are deemed
to be ‘strictly necessary for the delivery of a service requested by the user’ the consent of the user is
not needed. An example of a ‘strictly necessary’ cookie is when you press ‘add to basket’ or ‘continue
to checkout’ when shopping online. It is important that the browser remembers information from a
previous web page in order to complete a successful transaction.

The article is technology neutral, not naming any specific technological means which may be used to
store data, but applies to any information that a website causes stored in a user’s browser. This reflects
the EU legislator’s desire to leave the regime of the directive open to future technological developments.

The addressees of the obligation are Member States, who must ensure that the use of electronic com-
munications networks to store information in a visitor’s browser is only allowed if the user is provided
with ‘clear and comprehensive information’, in accordance with Data Protection Directive, about the
purposes of the storage of, or access to, that information; and has given his or her consent.

The regime so set-up can be described as opt-in, effectively meaning that the consumer must give his
or her consent before cookies or any other form of data is stored in their browser. The UK Regulations
allow for consent to be signified by future browser settings, which have yet to be introduced but which
must be capable of presenting enough information so that a user can give their informed consent and
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indicating to a target website that consent has been obtained. Initial consent can be carried over into
repeated content requests to a website. The Directive does not give any guidelines as to what may
constitute an opt-out, but requires that cookies, other than those ‘strictly necessary for the delivery of a
service requested by the user’ are not to be placed without user consent.

5.1.3 Patients’ rights in cross-border healthcare

Directive 2011/24/EU of the European Parliament and of the Council of 9 March 2011 on the application
of patients’ rights in cross-border healthcare is in force since the 24th April 2011. The Directive has been
formally adopted by the Council.

The Directive helps patients who need specialised treatment, for example those who are seeking a diag-
nosis or treatment for a rare disease. It brings about closer and improved health co-operation between
Member States, including the recognition of prescriptions. Health experts across Europe are better able
to share best practices on healthcare and establish and maintain standards of excellence.

5.1.4 Guidelines of practice

Information is one of RADIO Project’s most important assets. Protection of information assets is neces-
sary to establish and maintain trust between the healthcare institution and its patients, maintain compli-
ance with the law, and protect the reputation of the project. Timely and reliable information is required
regarding collected information in order to support healthcare institutions needs and accurate patient
diagnosis. A healthcare institution’s reputation and integrity can be adversely affected if information
becomes known to unauthorized parties, is altered, or is not available when it is needed. Information
security is the process with which an organization protects and secures its systems, media, and facilities
that process and maintain information vital to its operations.

On a broad scale, the RADIO Consortium members have a primary role in protecting the patients per-
sonal information, upon collected and processed from information systems within RADIO project scope.
The Guidelines of Practice provide guidance to consortium members during architecture, implementa-
tion and service delivery to assess the level of security risks to the RADIO Project.

5.2 RADIO Security Objectives

The RADIO system is appointed to develop a platform to manage and analyse acquired multimodal and
advanced technology data from brain and body activities of epileptic patients emphasising privacy and
security issues. It is therefore important to analyse the security risks of the system and implications of
compromise of the system or data. A secure system will protect data confidentiality and integrity as well
as protect its availability.

Information security enables RADIO to meet its objectives by implementing multimodal data collection
with due consideration of information technology (IT) capacity and constraints. RADIO members meet
this goal by striving to accomplish the following security related objectives.

5.2.1 Availability

The ongoing availability of systems addresses the processes, policies, and controls used to ensure autho-
rized users have prompt access to information. This objective protects against intentional or accidental
attempts to deny legitimate users access to information or systems.

Certain RADIO scenarios have several time critical functions. For example in emergency life threatening
seizure detection, a situation where every second is important, doctors should have feasible access to the
data they need. Also, appropriately appointed caregivers should be alarmed in a timely way.

Integrity of Data or Systems—System and data integrity relate to the processes, policies, and controls
used to ensure information has not been altered in an unauthorized manner and that systems are free
from unauthorized manipulation that will compromise accuracy, completeness, and reliability.

RADIO features such patient risk assessment and decision support for the professionals, rely on accurate
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information. Corrupted data may cause unexpected behavior on the system. With fabricated data, a
malicious party may try to affect the behavior of the RADIO system. Data can be corrupted during
transmission or while stored. Attempts may be made to enter fabricated data to the system through
normal RADIO input devices e.g. touch screen or via open communication channel.

5.2.2 Confidentiality of Data or Systems

Confidentiality covers the processes, policies, and controls employed to protect information of external
parties and RADIO against unauthorized access or use. The RADIO applications will access and use
information about the patient that is sensitive e.g. health status. Actual or perceived risk of such infor-
mation being available to unauthorized personnel will affect negatively the acceptability of the RADIO
solution.

Protection of user privacy is thus important. Confidentiality of the RADIO data can be compromised
at data storage, during data transmission or gaining access to one of the devices through which RADIO
provides data output e.g. health professional’s computer.

5.2.3 Accountability

Clear accountability involves the processes, policies, and controls necessary to trace actions to their
source. Accountability directly supports non-repudiation, deterrence, intrusion prevention, security
monitoring, recovery, and legal admissibility of records.

5.2.4 Assurance

Assurance addresses the processes, policies, and controls used to develop confidence that technical and
operational security measures work as intended. Assurance levels are part of the system design include
availability, integrity, confidentiality, and accountability. Assurance highlights the notion that secure
systems provide the intended functionality while preventing undesired actions.

5.3 Security Control Implementation

In this section critical concepts regarding the implementation of security control will be presented from
a system wide perspective.

5.3.1 Access Control

The goal of access control is to allow access by authorized individuals and devices and to disallow ac-
cess to all others. Authorized individuals as part of RADIO are considered the consortium members
being part of the project. Access should be authorized and provided only to individuals whose identity
is established, and their activities should be limited to the minimum required for project purposes. An
effective control mechanism includes numerous controls to safeguard and limits access to key informa-
tion system assets at all layers in the network stack. This section addresses logical and administrative
controls, including access rights administration for individuals and network access issues.

5.3.2 Access Rights Administration

System devices, programs, and data are system resources. Each system resource may need to be accessed
by individuals (users) in order for work to be performed. Access beyond the minimum required for work
to be performed exposes the project’s systems and information to a loss of confidentiality, integrity, and
availability. Accordingly, the goal of access rights administration is to identify and restrict access to any
particular system resource to the minimum required for work to be performed.

Formal access rights administration for users consists of four processes:

1. An enrollment process to add new users to the system;

2. An authorization process to add, delete, or modify authorized user access to operating systems,
applications, directories, files, and specific types of information;

3. An authentication process to identify the user during subsequent activities; and
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4. A monitoring process to oversee and manage the access rights granted to each user on the system.

The enrollment process establishes the user’s identity and anticipated business needs for information
and systems. During enrollment and thereafter, an authorization process determines user access rights.
In certain circumstances the assignment of access rights may be performed only after the manager re-
sponsible for each accessed resource approves the assignment and documents the approval. In other
circumstances, the assignment of rights may be established by the user’s role or group membership, and
managed by pre-established authorizations for that group. External parties, on the other hand, may be
granted access based on their relationship with the project.

Authorization for privileged access should be tightly controlled. Privileged access refers to the ability to
override system or application controls. Good practices for controlling privileged access include

• Identifying each privilege associated with each system component,

• Implementing a process to allocate privileges and allocating those privileges either on a need-to-
use or an event-by-event basis,

• Documenting the granting and administrative limits on privileges,

• Finding alternate ways of achieving the business objectives,

• Assigning privileges to a unique user ID apart from the one used for normal business use,

• Logging and auditing the use of privileged access,

• Reviewing privileged access rights at appropriate intervals and regularly reviewing privilege ac-
cess allocations and

• Prohibiting shared privileged access by multiple users.

The access rights process programs the system to allow the users only the access rights they were
granted. Since access rights do not automatically expire or update, periodic updating and review of
access rights on the system is necessary. Updating should occur when an individual’s business needs
for system use changes. Many job changes can result in an expansion or reduction of access rights. Job
events that would trigger a removal of access rights include transfers, resignations, and terminations.
When these job events occur, project stakeholders should take particular care to promptly remove the
access rights for users who have remote access privileges, access to patient information, and perform
administration functions for the project’s systems.

Because updating may not always be accurate, periodic review of user accounts is a good control to test
whether the access right removal processes are functioning and whether users exist who should have
their rights rescinded or reduced.

Access rights to new software and hardware present a unique problem. Typically, hardware and software
are shipped with default users, with at least one default user having full access rights. Easily obtainable
lists of popular software exist that identify the default users and passwords, enabling anyone with access
to the system to obtain the defaultuser’s access. Default user accounts should either be disabled, or the
authentication to the account should be changed. Additionally, access to these default accounts should
be monitored more closely than other accounts.

Sometimes software installs with a default account that allows anonymous access. Anonymous access
is appropriate, for instance, where the general public accesses an informational Web server. Systems
that allow access to or store sensitive information, including customer information, should be protected
against anonymous access.

The access rights process also constrains user activities through an acceptable-use policy (AUP). Users
who can access internal systems typically are required to agree to an AUP before using a system. An
AUP details the permitted system uses and user activities and the consequences of noncompliance. AUPs
can be created for all categories of system users, from internal programmers to external parties. An AUP
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is a key control for user awareness and administrative policing of system activities. Examples of AUP
elements for internal network and stand-alone users include

• The specific access devices that can be used to access the network;

• Hardware and software changes the user can make to their access device;

• The purpose and scope of network activity;

• Network services that can be used and those that cannot be used;

• Information that is allowable and not allowable for transmission using each allowable service;

• Bans on attempting to break into accounts, crack passwords, or disrupt service;

• Responsibilities for secure operation; and

• Consequences of noncompliance.

External parties may be provided with a Web site disclosure as their AUP. Based on the nature of the
Web site, RADIO may require external parties to demonstrate knowledge of and agreement to abide by
the terms of the AUP. That evidence can be paper based or electronic.

Authorized users may seek to extend their activities beyond what is allowed in the AUP and unauthorized
users may seek to gain access to the system and move within the system. Network security controls
provide many of the protections necessary to guard against those threats.

5.3.3 Authentication

Authentication is the verification of identity by a system based on the presentation of unique credentials
to that system. The unique credentials are in the form of something the user knows, something the user
has, or something the user is. Those forms exist as shared secrets, tokens, or biometrics. More than
one form can be used in any authentication process. Authentication that relies on more than one form is
called multi-factor authentication and is generally stronger than any single-factor authentication method.
Authentication contributes to the confidentiality of data and the accountability of actions performed on
the system by verifying the unique identity of the system user.

Authentication over the RADIO delivery channel presents unique challenges. That channel does not
benefit from physical security and controlled computing and communications devices like internal local
area networks (LANs), and is used by people whose actions cannot be controlled. It should be consid-
ered the use of single-factor authentication in that environment, as the only control mechanism, to be
inadequate for high-risk transactions involving access to patient information or the movement of health-
care information to other parties. Authentication does not provide assurance that the initial identification
of a system user is correct.

5.3.4 Shared Secret Systems

Shared secret systems uniquely identify the user by matching knowledge on the system to knowledge
that only the system and user are expected to share. Examples are passwords, pass phrases, or current
transaction knowledge. A password is one string of characters (e.g., ‘t0Ol@Tyme’). A pass phrase is
typically a string of words or characters (e.g., ‘My car is a shepherd’) that the system may shorten to a
smaller password by means of an algorithm. Current transaction knowledge for a financial institution for
example could be the account balance on the last statement mailed to the user/customer. The strength of
shared secret systems is related to the lack of disclosure of and about the secret, the difficulty in guessing
or discovering the secret, and the length of time that the secret exists before it is changed.

A strong shared secret system only involves the user and the system in the generation of the shared
secret. In the case of passwords and pass phrases, the user should select them without any assistance
from any other user, such as the help desk. One exception is in the creation of new accounts, where a
temporary shared secret could be given to the user for the first log-in, after which the system requires
the user to create a different password. Controls should prevent any user from re-using shared secrets
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that may have been compromised or were recently used by them.

5.3.5 Token Systems

Token systems typically authenticate the token and assume that the user who was issued the token is
the one requesting access. One example is a token that generates dynamic passwords after a set number
of seconds. When prompted for a password, the user enters the password generated by the token. The
token’s password-generating system is identical and synchronized to that in the system, allowing the
system to recognize the password as valid. The strength of this system of authentication rests in the
frequent changing of the password and the inability of an attacker to guess the seed and password at any
point in time.

Another example of a token system uses a challenge/response mechanism. In this case, the user identifies
him/herself to the system, and the system returns a code to enter into the password-generating token.
The token and the system use identical logic and initial starting points to separately calculate a new
password. The user enters that password into the system. If the system’s calculated password matches
that entered by the user, the user is authenticated. The strengths of this system are the frequency of
password change and the difficulty in guessing the challenge, seed, and password.

5.3.6 Public Key Infrastructure

Public key infrastructure (PKI), if properly implemented and maintained, can provide a strong means of
authentication. By combining a variety of hardware components, system software, policies, practices,
and standards, PKI can provide for authentication, data integrity, defenses against customer repudiation,
and confidentiality. The system is based on public key cryptography in which each user has a key pair—
a unique electronic value called a public key and a mathematically related private key. The public key is
made available to those who need to verify the user’s identity.

The private key is stored on the user’s computer or a separate device such as a smart card. When the
key pair is created with strong encryption algorithms and input variables, the probability of deriving the
private key from the public key is extremely remote. The private key must be stored in encrypted text
and protected with a password or PIN to avoid compromise or disclosure. The private key is used to
create an electronic identifier called a digital signature that uniquely identifies the holder of the private
key and can only be authenticated with the corresponding public key.

5.3.7 Device Authentication

Device authentication typically takes place either as a supplement to the authentication of individuals
or when assurance is needed that the device is authorized to be on the network. Devices are authenti-
cated through either shared secrets, such as pre-shared keys, or the use of PKI. Authentication can take
place at the network level and above. At the network level, IPv6 has the built-in ability to authenticate
each device. Device authentication is subject to the same shared-secret and PKI weaknesses as user
authentication, and is subject to similar offsetting controls. Additionally, similar to user authentication,
if the device is under the attacker’s control or if the authentication mechanism has been compromised,
communications from the device should not be trusted.

5.3.8 Examples of Common Authentication Weaknesses, Attacks, and Offsetting Controls

All authentication methodologies display weaknesses. Those weaknesses are of both a technical and a
nontechnical nature. Many of the weaknesses are common to all mechanisms. Examples of common
weaknesses include social engineering, client attacks, replay attacks, man-in-the-middle attacks, and
hijacking. Frequently, the authentication data is encrypted; however, dictionary attacks make decryption
of even a few passwords in a large group a trivial task. A dictionary attack uses a list of likely authenti-
cators, such as passwords, runs the likely authenticators through the encryption algorithm, and compares
the result to the stolen, encrypted authenticators. Any matches are easily traceable to the pre-encrypted
authenticator.

Dictionary and brute force attacks are viable due to the speeds with which comparisons are made. As
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microprocessors increase in speed, and technology advances to ease the linking of processors across
networks, those attacks will be even more effective. Because those attacks are effective, great care
should be taken in securing authentication databases. Upon use of one-way hashes the insertion of
secret bits should be considered (also known as ‘salt’) to increase the difficulty of decrypting the hash.
Salt has the effect of increasing the number of potential authenticators that attackers must check for
validity, thereby making the attacks more time consuming and creating more opportunity for system
administrators to identify and react to the attack.

Social engineering involves an attacker obtaining authenticators by simply asking for them. For instance,
the attacker may masquerade as a legitimate user who needs a password reset or as a contractor who
must have immediate access to correct a system. An attack may also try all possible combinations of
the allowed character set. By using persuasion, being aggressive, or using other interpersonal skills, the
attackers encourage a legitimate user or other authorized person to give them authentication credentials.
Controls against these attacks involve strong identification policies and user training.

Client attacks are an area of vulnerability common to all authentication mechanisms. Passwords, for
instance, can be captured by hardware- or software-based keystroke capture mechanisms. PKI private
keys could be captured or reverse-engineered from their tokens. Protection against these attacks primar-
ily consists of physically securing the external party systems, and, if a shared secret is used, changing
the secret on a frequency commensurate with risk.

Replay attacks occur when an attacker eavesdrops and records the authentication as it is communicated
between an external party and the ARMOM system and then later uses that recording to establish a new
session with the system and masquerade as the true user. Protections against replay attacks include
changing cryptographic keys for each session, using dynamic passwords, expiring sessions through
the use of time stamps, expiring PKI certificates based on dates or number of uses, and implementing
liveness tests for biometric systems.

Man-in-the-middle attacks place the attacker’s computer in the communication line between the server
and the client. The attacker’s machine can monitor and change communications. Controls against man-
in-the-middle attacks include prevention through host and client hardening, appropriate hardening and
monitoring of domain name service (DNS) servers and other network infrastructure, authentication of
the device communicating with the server, and the use of PKI.

Hijacking is an attacker’s use of an authenticated user’s session to communicate with system compo-
nents. Controls against hijacking include encryption of the user’s session and the use of encrypted
cookies or other devices to authenticate each communication between the client and the server.

5.3.9 Encryption

Encryption is used to secure communications and data storage, particularly authentication credentials
and the transmission of sensitive information. It can be used throughout technological environment,
including the operating systems, middleware, applications, file systems, and communications protocols.
Encryption can be used as a preventive control, a detective control, or both. As a prevention control,
encryption acts to protect data from disclosure to unauthorized parties. As a detective control, encryption
is used to allow discovery of unauthorized changes to data and to assign responsibility for data among
authorized parties. When prevention and detection are joined, encryption is a key control in ensuring
confidentiality, data integrity, and accountability.

Properly used, encryption can strengthen the security of a project’s systems. Encryption also has the
potential, however, to weaken other security aspects. For instance, encrypted data drastically lessens the
effectiveness of any security mechanism that relies on inspections of the data, such as anti-virus scanning
and intrusion detection systems. When encrypted communications are used, networks may have to be
reconfigured to allow for adequate detection of malicious code and system intrusions.

Although necessary, encryption carries the risk of making data unavailable should anything go wrong
with data handling, key management, or the actual encryption. For example, a loss of encryption keys or
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other failures in the encryption process can deny the member’s access to the encrypted data. The products
used and administrative controls should contain robust and effective controls to ensure reliability.

An encryption strength should be employed sufficient to protect information from disclosure until such
time as the information’s disclosure poses no material threat. For instance, authenticators should be
encrypted at strength sufficient to detect and react to an authenticator theft before the attacker can decrypt
the stolen authenticators.

Decisions regarding what data to encrypt and at what points to encrypt the data are typically based on
the risk of disclosure and the costs and risks of encryption. The costs include potentially significant
overhead costs on hosts and networks. Generally speaking, authenticators are encrypted whether on
public networks or on project’s network. Sensitive information is also encrypted when passing over a
public network and also may be encrypted within RADIO. Encryption cannot guarantee data security.
Even if encryption is properly implemented, for example, a security breach at one of the endpoints of the
communication can be used to steal the data or allow an intruder to masquerade as a legitimate system
user.

5.3.10 Encryption Types

Three types of encryption exist: the cryptographic hash, symmetric encryption and asymmetric encryp-
tion. A cryptographic hash reduces a variable-length input to a fixed-length output. The fixedlength
output is a unique cryptographic representation of the input. Hashes are used to verify file and message
integrity. For instance, if hashes are obtained from key operating system binaries when the system is first
installed, the hashes can be compared to subsequently obtained hashes to determine if any binaries were
changed. Hashes are also used to protect passwords from disclosure. A hash, by definition, is a one-way
encryption. An attacker who obtains the password cannot run the hash through an algorithm to decrypt
the password. However, the attacker can perform a dictionary attack, feeding all possible password
combinations through the algorithm and look for matching hashes, thereby assuming the password. To
protect against that attack, ‘salt’, or additional bits, are added to the password before encryption. The
addition of the bits means the attacker must increase the dictionary to include all possible additional bits,
thereby increasing the difficulty of the attack.

Symmetric encryption is the use of the same key and algorithm by the creator and reader of a file
or message. The creator uses the key and algorithm to encrypt, and the reader uses both to decrypt.
Symmetric encryption relies on the secrecy of the key. If the key is captured by an attacker, either when
it is exchanged between the communicating parties, or while one of the parties uses or stores the key, the
attacker can use the key and the algorithm to decrypt messages or to masquerade as a message creator.

Asymmetric encryption lessens the risk of key exposure by using two mathematically related keys,
the private key and the public key. When one key is used to encrypt, only the other key can decrypt.
Therefore, only one key (the private key) must be kept secret. The key that is exchanged (the public
key) poses no risk if it becomes known. For instance, if individual A has a private key and publishes
the public key, individual B can obtain the public key, encrypt a message to individual A, and send it.
As long as individual A keeps his private key secure from discovery, only individual A will be able to
decrypt the message.

5.3.11 Examples of Encryption Uses

Asymmetric encryption is the basis of public key infrastructure. In theory, PKI allows two parties
who do not know each other to authenticate each other and maintain the confidentiality, integrity, and
accountability for their messages. PKI rests on both communicating parties having a public and a private
key, and keeping their public keys registered with a third party they both trust, called the certificate
authority, or CA. The use of and trust in the third party is a key element in the authentication that takes
place. For example, assume individual A wants to communicate with individual B. A first hashes the
message, and encrypts the hash with A’s private key. Then A obtains B’s public key from the CA and
encrypts the message and the hash with B’s public key. Obtaining B’s public key from the trusted CA
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provides A assurance that the public key really belongs to B and not someone else. Using B’s public key
ensures that the message will only be able to be read by B. When B receives the message, the process is
reversed. B decrypts themessage and hash with B’s private key, obtains A’s public key from the trusted
CA, and decrypts the hash again using A’s public key. At that point, B has the plain text of the message
and the hash performed by A. To determine whether the message was changed in transit, B must re-
perform the hashing of the message and compare the newly computed hash to the one sent by A. If the
new hash is the same as the one sent by A, B knows that the message was not changed since the original
hash was created (integrity). Since B obtained A’s public key from the trusted CA and that key produced
a matching hash, B is assured that the message came from A and not someone else (authentication).
Various communication protocols use both symmetric and asymmetric encryption.

Transaction layer security (TLS), the successor to Secure Socket Layer (SSL) uses asymmetric en-
cryption for authentication, and symmetric encryption to protect the remainder of the communications
session. TLS can be used to secure healthcare applications and other transmissions between the RADIO
and external parties. TLS may also be used to secure e-mail, telnet, and FTP sessions.

IPSec is a complex aggregation of protocols that together provide authentication and confidentiality
services to individual IP packets. It can be used to create a VPN over the Internet or other untrusted
network, or between any two computers on a trusted network. Since IPSec has many configuration op-
tions, and can provide authentication and encryption using different protocols, implementations between
vendors and products may differ.

SSL and TLS are frequently used to establish encrypted tunnels between a service provider and its users.
They are also used to provide a different type of VPN than that provided by IPSec.

Secure Shell (SSH) is frequently used for remote server administration. SSH establishes an encrypted
tunnel between a SSH client and a server, as well as authentication services.

Encryption may also be used to protect data in storage. The implementation may encrypt a file, a
directory, a volume, or a disk.

5.4 Security Monitoring

Security monitoring focuses on the activities and condition of network traffic and network hosts. Ac-
tivity monitoring is primarily performed to assess policy compliance, identify non-compliance with the
project security goals, and identify intrusions and support an effective intrusion response. Because ac-
tivity monitoring is typically an operational procedure performed over time, it is capable of providing
continual assurance.

Monitoring of condition is typically performed in periodic testing. The assurance provided by condition
monitoring can relate to the absence of an intrusion, the compliance with authorized configurations,
and the overall resistance to intrusions. Condition monitoring does not provide continual assurance, but
relates to the point in time of the test.

Risk drives the degree of monitoring. In general, risk increases with system accessibility and the sen-
sitivity of data and processes. For example, a high-risk system is one that is remotely accessible and
allows direct access to diagnosis, personal or sensitive healthcare data. Information-only Web sites that
are not connected to any internal institution system or transaction-capable service are lower-risk sys-
tems. Information systems that exhibit high risks should be subject to more rigorous monitoring than
low-risk systems.

Project’s security monitoring should, commensurate with the risk, be able to identify control failures
before a security incident occurs, detect an intrusion or other security incident in sufficient time to
enable an effective and timely response, and support post-event forensics activities.
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5.5 Activity Monitoring

Activity monitoring consists of host and network data gathering, and analysis. Host data is gathered and
recorded in logs and includes performance and system events of security significance. Host performance
is important to identify anomalous behavior that may indicate an intrusion. Security events are important
both for the identification of anomalous behavior and for enforcing accountability. Examples of security
events include operating system access, privileged access, creation of privileged accounts, configuration
changes, and application access. Privileged access may be subject to keystroke recording. Sensitive
applications should have their own logging of significant events. Host activity recording is typically
limited by the abilities of the operating system and application. Network data gathering is enabled by
sensors that typically are placed at control points within the network. For example, a sensor could record
traffic that is allowed through a firewall into the perimeter networking (often reffered to as demilitarized
zone or DMZ), and another sensor could record traffic between the DMZ and the internal network. As
another example, a sensor could be placed on a switch that controls a subnet on the internal network and
record all activity into and out of the subnet.

Network data gathering is governed by the nature of network traffic. The activity recorded can range
from parts of headers to full packet content. Packet header information supports traffic analysis and
provides such details as the endpoints, length, and nature of network communication. Packet header
recording is useful even when packet contents are encrypted. Full packet content provides the exact
communications traversing the network in addition to supporting traffic analysis. Full packet content
recording allows for a more complete analysis, but entails additional collection, storage, and retrieval
costs.

Many types of network sensors exist. Sensors built into some popular routers record activity from packet
headers. Host-based sniffer software can be used on a device that does not have an IP address. Some
sensors are honeypots, or hosts configured to respond to network communications similar to other hosts,
but exist only for the purpose of capturing communications. Other sensors contain logic that performs
part of the analysis task, alerting on the similarity between observed traffic and preconfigured rules or
patterns.

5.5.1 Log Transmission, Normalization, Storage and Protection

Network and host activities typically are recorded on the host and sent across the network to a central
logging facility. The data that arrives at the logging facility is in the format of the software that recorded
the activity. The logging facility may process the logging data into a common format. That process is
called normalization. Normalized data frequently enables timely and effective log analysis.

Log files are critical to the successful investigation and prosecution of security incidents and can poten-
tially contain sensitive information. Intruders will often attempt to conceal any unauthorized access by
editing or deleting log files. Therefore, RADIO should strictly control and monitor access to log files
whether on the host or in a centralized logging facility. Some considerations for securing the integrity
of log files include

• Encrypting log files that contain sensitive data or that are transmitting over the network;

• Ensuring adequate storage capacity to avoid gaps in data gathering;

• Securing back-up and disposal of log files;

• Logging the data to a separate, isolated computer;

• Logging the data to write-only media like a write-once/read-many (WORM) disk or drive; and

• Setting logging parameters to disallow any modification to previously written data.
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6 CONCLUSION

In this report we described the overall architecture of the RADIO ecosystem and established the inter-
connections of the various components, entities and sites.

In the proposed architecture, special care has been taken regarding data protection requirements. Sensi-
tive data is only accessible by authenticated and authorized personel. Transmission of raw data points
is avoided, while trasmission of derived abstract data is encrypted when leaving the boundaries of a
RADIO Home. Moreover, privacy preservation in data analysis is enabled from the architecture by
enforcing the data to remain local and allow only certain aggregation to be performed.
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