

D4.3 Architecture for extending smart homes with robotic platform III

i

ROBOTS IN ASSISTED

LIVING ENVIRONMENTS

UNOBTRUSIVE, EFFICIENT, RELIABLE AND

MODULAR SOLUTIONS FOR INDEPENDENT AGEING

Research Innovation Action

Project Number: 643892 Start Date of Project: 01/04/2015 Duration: 36 months

DELIVERABLE 4.3

Architecture for extending smart homes

with robotic platform III

Dissemination Level Public

Due Date of Deliverable Project Month 30, September 2017

Actual Submission Date 10 May 2018

Work Package WP4, Physical home architecture development and integration of

cost-effective, reliable and power-efficient RADIO components for

elder monitoring and caring

Task T4.1, Designing device interconnection and interfacing

Lead Beneficiary RUB

Contributing beneficiaries NCSR-D, TWG, S&C, AVN

Type Report

Status Submitted

Version Final

Project funded by the European Union’s Horizon 2020 Research and Innovation Actions

D4.3 Architecture for extending smart homes with robotic platform III

i

Abstract

Architecture document, pertaining to RADIO device interconnection and interfacing; specifications on

interfacing the different domains; efficient processing of sensitive content in the distributed RADIO

environment; and the orchestration of the overall system.

History and Contributors

Ver Date Description Contributors

01 15 May 2017
First draft, summarizing D4.2 as a starting

point and establishing new document structure.
RUB

02 19 May 2017

New event wrapper added for composite

events (multiple sensors from different WSN)

(update of Section 8.4)

NCSR-D, S&C

03 6 Jun 2017
System of distributed ROS nodes (new

Section 7.2)
NCSR-D

05 14 Sep 2017

Task switching and other improvement in

robot behaviour (new Section 9) and using the

task switching mechanism in orchestration

(minor update of Section 8.2).

NCSR-D

06 20 Oct 2017
Accelerating image processing algorithms

(new Section 6)
RUB

07 22 Oct 2017
Hardware acceleration (new Section 4.2) and

final robot interface design (new Section 2.2)
RUB

08 22 Nov 2017 Additions to Section 4 and 5 TWG, AVN

09 30 Nov 2017 Additions to Section 6 and Conclusions TWG, AVN

10 4 May 2018
Minor updates and, in general, synchronization

with development in WP4.
NCSR-D

11 9 May 2018 Internal review. NCSR-D

Fin 10 May 2018 Final preparation and submission
NCSR-D, TWG,

RUB

D4.3 Architecture for extending smart homes with robotic platform III

ii

Abbreviations and Acronyms

BLE – Bluetooth Low Energy

ID – Identification

IoT – Internet of Things

WIFI – Wireless Fidelity

LAN – Local Area Network

API – Application Programming Interface

HCI – Host Controller Interface

LLC – Logical Link Control

ISM – Industrial Scientific Medical

SoC – System on Chip

FPGA – Field Programmable Gate Array

D4.3 Architecture for extending smart homes with robotic platform III

iii

CONTENTS

Contents ... iii

List of Figures ... v

List of Tables ... vi

1 Introduction ... 1

1.1 Purpose and Scope .. 1

1.2 Approach ... 1

1.3 Relation to other Work Packages and Deliverables .. 2

2 Device Interconnection and Interfacing .. 3

2.1 Summary of D4.1 and D4.2 .. 3

2.2 Final Robot Interface Design .. 5

3 Specifications on Interfacing the different Domains .. 6

3.1 Summary of D4.1 and D4.2 .. 6

4 Fast and Energy Efficient Data Processing ... 8

4.1 Summary of D4.1 and D4.2 .. 8

4.2 Final Hardware Acceleration Architecture ... 10

4.3 The Role of a dedicated HW Component ... 12

4.4 Visual content processing and privacy .. 13

5 The Need for Energy Efficient Execution ... 15

5.1 Summary of D4.1 and D4.2 .. 15

5.2 Autonomy Estimator for AAL Robots .. 18

5.2.1 Description of the Tool Main Stages .. 19

6 Accelerating Image Processing Algorithms .. 22

6.1.1 Profiling Results .. 23

6.1.2 Hardware Accelerator Design ... 24

6.1.3 Evaluation ... 27

7 Managing the RADIO Computation Platform using Software Analysis Tools 29

7.1 Summary of D4.1 and D4.2 .. 29

7.2 Designing a System of Distributed ROS Nodes ... 29

8 The RADIO Main Controller .. 31

8.1 Architecture ... 31

8.2 Orchestration ... 31

8.3 ZWave and MQTT Network Bridges ... 31

8.4 ADL Recognition Wrappers and Report Generator .. 33

8.5 Data Services .. 34

D4.3 Architecture for extending smart homes with robotic platform III

iv

9 Robot Behaviour ... 35

9.1 Task Switching .. 35

9.1.1 Motivation and Requirements ... 35

9.1.2 Architecture ... 37

9.1.3 Implementation ... 37

9.1.4 Measurements ... 39

9.2 Navigation in Cluttered Spaces ... 39

10 Conclusions ... 40

D4.3 Architecture for extending smart homes with robotic platform III

v

LIST OF FIGURES

Figure 1: Relation to other Work Packages and Deliverables .. 2

Figure 2: Device interconnection within the smart home environment .. 3

Figure 3 Spectrum of BLE and WIFI with interference ... 4

Figure 4 Final device interconnection of the robot ... 5

Figure 5 A high level view of the on robot processing nodes ... 8

Figure 6 Diagram illustrating the data flow between the ROBOT, gateway and IoT platform 9

Figure 7 A high level view of the on robot processing nodes in D4.2 .. 9

Figure 8 State diagram highlighting different (power) modes .. 10

Figure 9 Complete hardware design for the RADIO FPGA ... 11

Figure 10 Hardware acceleration for image processing algorithms .. 11

Figure 11 Image processing core in the low power operation hardware chain 12

Figure 12 ON Semiconductor’s PYTHON-1300 color image sensor ... 13

Figure 13 Daily activity profile ... 17

Figure 14 Run-time depletion of robot battery and number of required charges for the three studied

offloading policies .. 18

Figure 15 Data flow and main processing steps in the autonomy estimator ... 19

Figure 16 Estimator output ... 20

Figure 17 Schematic view of the kernel design annotated with pseudocode .. 23

Figure 18 Profiling results of the algortihm with activated markups .. 24

Figure 19 Profiling results of the algorithm without activated markups... 24

Figure 20 Depiction of the implemented algorithm .. 25

Figure 21 Resource uitilization of the initial OpenCL kernel ... 26

Figure 21 Resource utilization of the OpenCL kernel after optimizing the data access 26

Figure 23 Reosurce utilization of the OpenCl kernel after optimizng memory requirements 27

Figure 24 Resource utilization of the OpenCL kernel after optimizing loop executions...................... 27

Figure 25: A characteristic example of CPU time (left) and bandwidth (right) usage. 30

Figure 26. Interconnections between the Main Controller, Turtlebot, and the home automation

components. .. 32

Figure 27: Time (in sec) to load executable, start the process, and connect to the ROS middleware. . 36

Figure 28: Orchestration system ... 36

Figure 29: Node architecture .. 36

Figure 30: CPU usage of one of the four nodes that are responsible for the 4-meter walk ADL,

measurements made using rostune .. 38

D4.3 Architecture for extending smart homes with robotic platform III

vi

LIST OF TABLES

Table 1: Z-Wave commands and their type .. 4

Table 2: Specification for the cross domain interfaces for the Bluetooth domain 6

Table 3: Specification for the cross domain interfaces for the Z-Wave domain 6

Table 4: Specification for the cross domain interfaces for the WIFI/LAN domain 6

Table 5 Data Transfer and Process in relation to interfacing domains ... 9

Table 6 Robot Subsystem Energy Usage .. 15

Table 7 Energy profile by using HW accelerators .. 15

Table 8 Subblocks of the algorithm .. 24

Table 9: Measured execution times of each optimization step and of the software implementation 28

Table 10 Latency and power profiling of DCT’s taskss ... 29

D4.3 Architecture for extending smart homes with robotic platform III

1

1 INTRODUCTION

1.1 Purpose and Scope

This deliverable is the physical architecture of the RADIO Home, covering RADIO device

interconnection and interfacing, specifications on interfacing the different domains, and on fast and

energy efficient data processing in the distributed RADIO environment.

Within the scope of this document is:

 To design the physical architecture of the RADIO Home, and especially the wireless

communications architecture between the RADIO Robot platform, the Smart Home devices,

and the Main Controller that make up each RADIO Home.

 To design the architecture and the policies for managing the heterogeneous computing elements

of the RADIO Home, including the central server, FPGAs, and the on-board Robot controller.

Outside the scope of this document is the architecture (either conceptual or physical) of the

communication between the RADIO Home and other nodes of the RADIO ecosystem, such as cloud

storage components and components meant to be used by hospital personnel or informal care-givers.

This will be dealt with in Task 5.1.

1.2 Approach

This deliverable documents work done in Task 4.1, which specifies and designs the interconnection

structure and interfaces to exchange data between the home automation infrastructure and the robotic

platform. This task also specifies the sensors and the processing units such as FPGAs, the Robot on-

board computer, or other computers on the premises which comprise the RADIO Home, i.e., the part of

the overall RADIO system that is deployed within a single home. In addition, Task 4.1 tackles the

following assignments:

 Investigating the most efficient way, in terms of power and delay overhead, to process different

kinds of sensor data in the distributed RADIO environment.

 Observing privacy for the user.

 Observing technical limitations such as bandwidth and processing power.

 Striving for robustness through device redundancy.

Alternative hardware and sensor positioning configurations are also investigated as part of this task with

the focus on power and performance trade-offs between fixed function accelerators and more

programmable (or even pure software) solutions. The programmable solutions offer more flexibility to

provide several dedicated services to the end-users through software updates or extensions. However,

fixed logic hardware solutions offer the significant advantage of privacy for two main reasons: i)

the sensor data is pre-processed and immediately destroyed and ii) in case that further processing

is required, this is performed on anonymized data (the outcome of the pre-processing step).

We have extended the work done in D4.2 and D4.1 for this task as follows:

 We finalized the Robot interface design for interconnecting the NUC and the PicoZed to the

ROS environment.

 No changes were conducted in the interconnection domains (Section 3).

 We implemented a RADIO image processing algorithm in hardware and optimized its

performance. The resource usage of the hardware block and of the complete designs are also

evaluated. The implementation of the image processing algorithms was performed using three

D4.3 Architecture for extending smart homes with robotic platform III

2

Task 4.1

D4.2

WP3 WP4

M18

M24

Task 4.1

D4.3

Task 4.2/4.3

D4.5/4.7

Task 3.1

D3.3

M30

Figure 1: Relation to other Work Packages and Deliverables

different methods/tools: hardware-only implementation based on Verilog HDL code, through

Xilinx Vivado HLS (high-level synthesis), and through HW-SW partitioning.

 The system level energy savings approach proposed in D4.1 and D4.2 was refined and extended

to include an energy estimator tool. The energy estimation approach is verified assuming

specific usage scenarios that are further described in D4.9.

The definition of the conceptual architecture in Task 4.1 has also allowed the consortium to refine the

approach to WP4 as a whole and to establish the following work plan:

 TWG and AVN will design the interface for data transfer and communication among network

nodes, and design hardware modules’ interfaces with their respective infrastructural system

components such as nodes or/and sensors.

 TWG and S&C will ensure compatibility of the RADIO-prototyped components with the rest

of the system through emulation or detailed analysis.

 RUB and TWG will explore various hardware configurations and task mapping policies

among all the processing units of the RADIO ecosystem in order to extract the best solution in

terms of latency, power consumption, and area.

 AVN and TWG will investigate system-level power savings modes taking as input the user

behavior targeting to increase the autonomy of the Robot in terms of battery charges.

1.3 Relation to other Work Packages and Deliverables

This document is the third in a series of closely related deliverables. The final version due in M30

(September 2017) is used to synchronize Task 4.1 with Task 4.2 and Task 4.3. The final version (M30)

documents the architecture and interfacing of the final hardware components and robotic platform.

This deliverable updates, extends deliverable D4.2. Because this is the final document of Task 4.1, it

will also summarize all progress from the deliverable D4.1 and D4.2. Task 4.2 and Task 4.3 use the

physical architecture developed in this deliverable for the final prototype of the RADIO architecture.

D4.3 Architecture for extending smart homes with robotic platform III

3

2 DEVICE INTERCONNECTION AND INTERFACING

This chapter specifies the interconnection between the different devices within the smart home

environment and defines how the respective devices interface with the smart home infrastructure.

2.1 Summary of D4.1 and D4.2

As introduced in deliverable D4.1, the smart home is comprised of several devices with different

communication protocols. Figure 2 shows all available devices within the smart home environment and

their respective interconnections.

As seen in Figure 2, the robot requires WIFI and Bluetooth connectivity. The gateway is a Raspberry

Pi and requires Bluetooth, Z-Wave, and LAN interfaces. Because Bluetooth connectivity is required for

both the gateway and the robot, deliverable D4.1 analysed the Bluetooth protocol in depth. This analysis

helped drive development of the BLE communication. Several device options were also considered for

usage on the gateway and the robot. These devices also served for debug purposes and easier

development. Since the gateway functionality is implemented on a Raspberry Pi, the Z-Wave interface

for the gateway is provided by the Razberry module for the Raspberry Pi. The Z-Wave devices are only

able to communicate with the Z-Wave gateway and an external server, the IoT platform. The positions

of the BLE devices and the Z-Wave devices were assumed to be in fixed positions. This potentially

allowed the annotation of the robots map with the BLE devices.

In deliverable D4.2, the BLE devices of the smart home environment should also support mobile BLE

devices. These devices should be locatable by the robot. Therefore, accurate measurements of the

received signal strength indication (RSSI) were required. When using the integrated Bluetooth and

WIFI chip of the NUC, inconsistent results were achieved for the RSSI values at fixed positions. The

cause of this was that the WIFI and Bluetooth signal interfered each other when the NUCs chip was

used for both protocols simultaneously, see Figure 3.

Figure 2: Device interconnection within the smart home environment

Router

Gateway
WIFI/LAN

Z-Wave Bluetooth

Bluetooth

Smart Home
devices

BLE devices

Robot

WIFI

D4.3 Architecture for extending smart homes with robotic platform III

4

Figure 3 Spectrum of BLE and WIFI with interference

In deliverable D4.2, the Z-Wave devices are now able to communicate with the other smart home

devices and manage the network. Management of the network includes adding and removing devices,

controlling the networks routing. These are handled by “function” commands. The Z-Wave device

functions are controlled through “command” commands. Generally, the “command” command are

either for user or for device configuration. Table 1 shows the commands that are accessible by external

applications.

Table 1: Z-Wave commands and their type

External accessible functions

Z-Wave command Type of Class

sendData FUNCTION_CLASS

AddNodetoNetwork FUNCTION_CLASS

RemoveNodeFromNetwork FUNCTION_CLASS

setValue FUNCTION_CLASS

SetNodeLocation FUNCTION_CLASS

SetNodeName FUNCTION_CLASS

toggleActuatorSensor COMMAND_CLASS

toggleDimmableSensor COMMAND_CLASS

setThermostatSetPoint COMMAND_CLASS

setThermostatMode COMMAND_CLASS

setThermostatFanMode COMMAND_CLASS

D4.3 Architecture for extending smart homes with robotic platform III

5

Figure 4 Final device interconnection of the robot

2.2 Final Robot Interface Design

The main interface components of the robot is a wireless router form ASUS (see Figure 4 Final device

interconnection of the robot). The router has connections to the Intel NUC, the PicoZed, and the Hokuyo

Laser Scanner via Ethernet cables. This enables fast communication between all connected components.

Additionally, no additional work is required for bridging an internet connection from the PicoZed to the

NUC, thus increasing connection stability. Additionally, the employment of the router removed the

strong interference between the BLE and WIFI signals, because both interfaces are not used on the same

chip and they are now spatially separated. Furthermore, the usage of a router enables the usage of the

5 GHz WIFI band in case further signal interferences with BLE and Z-Wave occur.

Robot
Base

Intel NUCPicoZed WIFI Router

Hokuyo Laser Scanner

Ethernet

Ethernet Ethernet

USB

BLE

WIFI

ASUS Camera
PYTHON FMC

Camera

USBFMC

D4.3 Architecture for extending smart homes with robotic platform III

6

3 SPECIFICATIONS ON INTERFACING THE DIFFERENT

DOMAINS

This chapter deals with the challenge of transferring data through several different protocol domains.

No changes have occurred in this chapter for deliverable D4.3.

3.1 Summary of D4.1 and D4.2

In deliverable D4.1, we analyzed the interfacing requirements between the different protocol domains.

Based on the results from Chapter 2, the protocol domains Bluetooth, Z-Wave, and WIFI were analyzed.

Table 2 shows the summary of the specification for the cross domain interfaces for the Bluetooth

domain.

Table 2: Specification for the cross domain interfaces for the Bluetooth domain

Bluetooth Domain Specification

Cross domain interfaces Bluetooth – Z-Wave Bluetooth – WIFI/LAN

Necessity not required required

Participating entities Smart Home gateways
Robot platform

Smart Home gateways

Information exchange
commands for device

manipulation

None

position, type of device,

functionality, payload

The Bluetooth domain interfaces with two different entities, the smart home gateway and the robot

platform. While the Bluetooth-Z-Wave cross domain interface is not required, the Bluetooth-WIFI cross

domain interface is required, in order to make the generated information by the Bluetooth devices

available for the caregivers or the end-users. This can be either the position of the Bluetooth device, or

context sensitive information.

Table 3 shows the summary of the specification for the cross domain interfaces for the Z-Wave domain.

Table 3: Specification for the cross domain interfaces for the Z-Wave domain

Z-Wave Domain Specification

Cross domain interfaces Z-Wave – Bluetooth Z-Wave – WIFI/LAN

Necessity not required required

Participating entities Smart Home gateways Smart Home gateways

Information exchange
commands for device

manipulation

position, type of device,

functionality, payload

The Z-Wave devices only interface with the smart home gateway. Therefore, it is possible for the Z-

Wave devices to communicate with the Bluetooth devices. In the context of the RADIO project, this is

not required. Because the Z-Wave devices need to communicate and receive commands from the IoT

platform, the Z-Wave-WIFI cross domain interface is required in order to ensure full functionality of

the Z-Wave devices.

Table 4 shows the summary of the specification for the cross domain interface of the WIFI/LAN domain.

Table 4: Specification for the cross domain interfaces for the WIFI/LAN domain

D4.3 Architecture for extending smart homes with robotic platform III

7

WIFI/LAN Domain Specification

Cross domain interfaces WIFI/LAN – Z-Wave WIFI/LAN – Bluetooth

Necessity Required required

Participating entities Smart Home gateways
Robot platform

Smart Home gateways

Information exchange
position, type of device,

functionality, payload

None

position, type of device,

functionality, payload

Although the WIFI/LAN domain is only present between the gateways, the router and the robot platform,

it is the most important domain, because it enables to relay the gathered information by each entity to

the caregivers or the IoT platform. Therefore, the WIFI/LAN-Z-Wave cross domain interface and the

WIFI/LAN-Bluetooth cross domain interface is required for the RADIO smart home environment.

In deliverable D4.2, no changes had to be made in terms of the specification of the cross domain

interfaces.

D4.3 Architecture for extending smart homes with robotic platform III

8

4 FAST AND ENERGY EFFICIENT DATA PROCESSING

This chapter identifies the RADIO algorithms, which benefit from hardware acceleration. The

corresponding hardware architecture is also introduced. Low power operation is also considered in the

hardware architecture.

4.1 Summary of D4.1 and D4.2

In general, there are two types of data processed in the system:

 High throughput streaming data created from continually receiving the output of a

microphone (audio stream) or a camera (video stream)

 Event or control-like data of relatively small size, collected by sensors. Event/measurement

data can also be the outcome of streaming data analysis, e.g., processing of video can lead

to the generation of an “exit” event if the camera looks towards the door

The event/measurement data can be transferred within the smart home since their payload is small. The

communication protocols used in the RADIO ecosystem do not have the bandwidth to transfer raw data

streams such as image or audio streams continuously between different entities for processing.

Additionally, transferring image or audio streams and not processing them locally poses a security risk.

Therefore, the processing of the data streams should be performed locally on the robots PicoZed FPGA,

see Figure 5. The PicoZed FPGA consists of an ARM Dual Core, a Neon vector processing engine and

programmable hardware. The goal is to efficiently utilize all the available resources.

Figure 5 A high level view of the on robot processing nodes

The camera and microphone are directly connected to the FPGA platform, which then performs the pre-

and post-processing tasks. The camera data streams will be continuously monitored by the processing

elements of the FPGA platform and when activity is detected the corresponding algorithms (which can

analyse and recognise the activity) will be triggered. Depending on the specific combination of

algorithms that get triggered, some or all computational tasks may be executed in the processor (ARM

cores) or accelerated with fixed logic or reconfigurable hardware components inserted in the FPGA

reprogrammable logic. The algorithms required for both types of data streams can then be divided into

a hardware and software component with the help of hardware software co-design tools.

Possible hardware software co-design tools were identified as valgrind1, oprofile2, and vampir3. By

combining these three tools, exploitation of instruction level parallelism is possible. Because several

algorithms will run simultaneously on the RADIO robot platform, priorities of the different algorithms

have to be considered. If the result of the algorithm is required immediately, the processing platform

has to assign more processing resources to the respective algorithm. This requires scheduling algorithms

that handle dynamically appearing tasks and static tasks. These challenges define the attributes of the

task scheduler of the FPGA platform.

1 Valgrind Developers. http://valgrind.org, date of access: August 2015.
2 OpenSource project. http://oprofile.sourceforge.net, date of access: August 2015.
3 GWT-TUD GmbH. https://www.vampir.eu, date of access: August 2015.

D4.3 Architecture for extending smart homes with robotic platform III

9

Figure 6 Diagram illustrating the data flow between the ROBOT, gateway and IoT platform

Figure 7 A high level view of the on robot processing nodes in D4.2

The last topic covered in deliverable D4.1 is the distributed RADIO environment. The RADIO home

environment is connected with remote elements of the RADIO ecosystem, like the IoT platform,

through its gateway. The only exception to this rule is the RADIO robot which should have the

possibility of directly communicating with the IoT platform and with the RADIO gateway if necessary,

see Figure 6.

The distributed sensors are usually connected directly to the gateway. A few sensors provide data

important to the robot. These sensors are then connected to the robot, which then sends the data either

to the gateway or directly to the IoT platform. In summary, Table relates the various data processing

and transfer interface to the available domains.

In deliverable D4.2, the processing of the data stream model was updated to incorporate the Intel NUC

as data aggregation platform, see Figure 7.

Table 5 Data Transfer and Process in relation to interfacing domains

Data WIFI/LAN Z-Wave Bluetooth

Sensor data needed for analysis of audio and/or

video streams
 (optional) X

ADL and mood recognition event log generated

by the analysis of streams
X

Sensor data that can be directly forwarded for

remote processing
 X Optional

Robot location and status data X

D4.3 Architecture for extending smart homes with robotic platform III

10

Figure 8 State diagram highlighting different (power) modes

The Intel NUC receives the data from the camera and the microphone, since the data is also required

for localization and robot mapping. The Intel NUC then sends the data directly through ROS channels

to the PicoZed.

Deliverable D4.2 also expanded the concept of the distributed RADIO environment. The requirements

of the RADIO environment are responsiveness and efficiency. Responsiveness means that the system

reacts to stimulate in a certain amount of time. The time may vary depending on the stimulus. An

exemplary state diagram of the robot is shown in Figure 8.

This diagram highlights two points with green fonts where the smart home infrastructure triggers an

entering event through a motion sensor. Several states also require large amounts of data processing

that either can be performed with very low power consumption (i.e. follow the person, guiding or going

to a place, time needed to stand up(gym), measure walking speed (gym)) or is executed when the robot

is stationed on its charging station (i.e. time needed to stand up(in the room), measure walking speed

(in the room)).

4.2 Final Hardware Acceleration Architecture

The hardware design has undergone several changes within the RADIO project. The final hardware

architecture now has the ability to accelerate any kind of image or signal processing algorithm sent from

the NUC, provided that the hardware accelerator for the specific algorithm is actually available. The

complete hardware design is shown in Figure 9.

D4.3 Architecture for extending smart homes with robotic platform III

11

Figure 9 Complete hardware design for the RADIO FPGA

Figure 10 Hardware acceleration for image processing algorithms

This architecture supports the two function modes hardware acceleration and low power operation.

A more detailed view of the hardware acceleration mode design is shown in Figure 10.

The hardware accelerator is directly connected to the Zynq processing system via and AXI interconnect.

The Zynq processing system receives the data from the Intel NUC over ROS messages. The payload of

the ROS messages is sent to the hardware for processing. Depending on the algorithm, the hardware

accelerator sends the results of the algorithm or the complete image back to the Zynq processing system

for further processing. The hardware accelerator is connected to the AXI high performance port of the

Zynq processing system. This allows fast data transfer between the processing system and the

reconfigurable hardware which is required when performing image processing.

The low power operation design is depicted in Figure 11.

D4.3 Architecture for extending smart homes with robotic platform III

12

Figure 11 Image processing core in the low power operation hardware chain

In the low power operation mode, only the FPGA is active and performing periodically sensor update

from the Python camera. This Python camera is directly connected to the FPGA hardware and therefore

does not require an additional processor for transferring image data to the programmable logic.

Therefore, all systems that are not required for camera usage can be put in sleep mode until the image

processing core in the Python camera chain wakes up all other systems.

4.3 The Role of a dedicated HW Component

A HW accelerator component is a specially designed circuit which is implemented in FPGA (for

configurability and future upgradability) and is connected directly to the other subsystems. The

component is processing signals from sensors, so that simple decisions on whether other subsystems

have to be employed or not can be devised. Typically, this component is equipped with the following

functionality:

 Triggering mechanism, which initiates sensor data capture and processing

 Local Memory, which holds processed sensor data so that the main system RAM does not have

to be used

 Signal processing acceleration functions in FPGA

 Control interfaces to turn-on and notify (or get notified by) other subsystems

The dedicated HW components are implemented in the programmable logic (PL) of the Picozed APSoC

using three different techniques: hardware-only implementation based on Verilog HDL code, through

Xilinx Vivado HLS (high-level synthesis), and through HW-SW partitioning. More, specifically the

first type of implementation is based on the traditional way of hardware development. In particular, the

implementation is written using a HDL (Verilog in this work). This approach leads to the most efficient

hardware components, but it is a time-consuming approach and most importantly it cannot take full

advantage of the Zynq hardware and software features e.g., the dedicated memory controllers and the

dedicated busses to move data from the software part (ARM processor) to the hardware part.

On the other hand, an automated solution (e.g., our SDSoC based implementation; third hardware

implementation performed in this work) is able to get advantage of the previous features and reduce

significantly the development time, but the hardware modules are usually of medium quality (in terms

of performance and power). As a result of this work, it was proved that the best solution is given by the

Xilinx Vivado HLS (high-level synthesis) implementation. This is because, the HLS-based hardware

design offers the possibility to take advantage of the various verified and fully optimized Xilinx

components and as the same time it offers various parameters (in the form of pragmas in the C-code

level) that can be used to optimize the design in terms of area, performance and/or power. So, based on

this outcome, in the rest of this deliverable the HLS-based results (second implementation) will be

mainly analyzed, since these results exhibit the best derived properties in terms of performance and

power; the prime targets of the hardware component in the context of RADIO. Finally, it must be noted

that all the three implementations (source files with the associated READMEs) have been uploaded in

the github account of the project. More details about this can be found in D4.5.

D4.3 Architecture for extending smart homes with robotic platform III

13

Figure 12 ON Semiconductor’s PYTHON-1300 color image sensor

4.4 Visual content processing and privacy

The architecture presented Section 4.1 offers also significant advantages in terms of security and privacy.

By attaching the sensors to a processing unit at the edge of the application, we are able to process the

incoming data as a stream and thus there will not exist at any point in time raw images that can be read

out by an attacker to compromise the data security of the application. All processing takes place in-

stream or in local inaccessible memory immediately at the sensor. Only abstract derivative information

is extracted from the raw data and leaves the confines of the sensor. This means that no raw visual

content is stored or transmitted within the RADIO Home network when we employ edge computing

devices.

The PicoZed FPGA represents such an edge computing device if an image sensor can be directly

connected to the programmable logic of the PicoZed. The PicoZed consists of an ARM Dual Core, a

Neon vector processing engine and the FPGA programmable hardware. A sensor, which can be directly

connected to the programmable logic of the PicoZed is the PYTHON-1300 color image sensor that is

depicted in Figure 12.

The PYTHON-1300 is a 1/2 inch Super-eXtended Graphics Array (SXGA) CMOS image sensor with

a resolution of 1280 by 1024 pixels. It is connected to the PicoZed over the carrier card’s FMC

connector. This connector allows the direct connection to the programmable logic without going over

the DDR memory or the ARM Dual cores of the PicoZed. Out of the box, the PYTHON-1300 is

configured via software which we want to avoid in the RADIO project in order to ensure the patients

visual data security. Therefore, the configuration cores of the PYTHON-1300 needed to be changed to

be pre-configured in the bitstream so that the PYTHON-1300 is directly operational during the start-up

of the PicoZed. To further protect the sensitive information, the pre-processing of the streaming data is

performed in a fixed logic, hardware accelerator.

The PYTHON-1300 outputs images at 60 Hz. For this frequency, the image stream needs to be

processed at approximately 160 MHz. Therefore, the image processing hardware accelerator for the

patient’s visual data security needed to be able to be clocked at the same frequency. However, the

default frequency of the hardware accelerators (in general of typical FPGA designs) are generally 100

MHz or lower.

Thus, the hardware accelerator needed to be adapted to our requirements. This was done with the

Vivado toolsuite from Xilinx. During hardware generation with Vivado HLS, several options exist to

improve performance. Through pragma/directive usage, the time required for design space exploration

is reduced.

D4.3 Architecture for extending smart homes with robotic platform III

14

One option to improve performance of the hardware is to replace the 32-Bit data types int and float with

the 24-bit hardware efficient data types ap_int and ap_fixed. With hardware efficient data types, more

operations can be executed in one cycle at the cost of additional hardware usage and less data needs to

be transferred. This leads to a higher clock frequency and thus a faster overall computation time.

However, by using hardware efficient data types, it is possible that the accelerator suffers from a

reduced accuracy, which then would result in a larger number of iterations. With hardware efficient

data types, the overall resources (DSP slices, flip flops) required by the hardware is increased. This

effect is because now more logic per cycle is available through the hardware efficient data types. This

leads to a faster performance but to a higher resource utilization.

Another option to improve performance is to either merge, flatten, or unroll the loops of the algorithm.

The choice for flattening, unrolling or merging the loops depends heavily on the loop itself (type of

loop iterators) and need to be analyzed for every loop separately. By performing either one of these

three optimization steps on the respective loops, the cycles can be even further reduced.

By using Allocation Directives, it is possible to assign/map FPGA resources to specific operations. By

limiting the number of available resources for the respective operations, hardware reuse can be achieved.

The end result was that through the use of these performance improvement options, we were able to set

the clock frequency of the hardware accelerator to the required 160 MHz.

Another challenge we faced when implementing the visual security hardware on the PicoZed, was

meeting the timing constraints of the overall design when inserting our hardware accelerator into the

normal image stream flow of the PYTHON-1300. All devices need to be connected to the same clock

from the same source for synchronicity reasons. However, the timing constraints of the overall design

were not met when inserting our hardware accelerator and thus we were forced to clock gate several

hardware blocks that did not directly influence the image stream flow over an additional clock source.

This needed to be done over an additional AXI Interconnect that served as clock reference for the

respective hardware blocks.

D4.3 Architecture for extending smart homes with robotic platform III

15

5 THE NEED FOR ENERGY EFFICIENT EXECUTION

This chapter describes a scenario, which benefits from an energy efficient hardware architecture.

5.1 Summary of D4.1 and D4.2
The RADIO robot is a unit which has many energy-hungry subsystems. These are:

 Main processor to control robot movement (NUC)

 FPGA to accelerate ADL recognition methods

 Sensors, especially the image sensor (camera)

 Mechanical subsystem (motors)

 Wireless subsystem (network)

If all subsystems are always active, the RADIO robot needs to be recharged every few hours, which

results in long periods of robot non-availability. As a first step, we had to understand how each

subsystem is used and if it, indeed, needs to be active at each use case. Table 6 provides an overview,

assuming that robot activity can be classified in the following states:

 Waiting: at this state, the robot is not moving; neither is it processing sensor data. At this point, the
robot is waiting to be triggered by some external event

 Moving: when leading the way or following a person

 Monitoring: at this state, the robot is not moving but it is processing sensor input data in order to
detect an ADL or understand patient’s mood

For some of these states, there is a difference on whether the robot is on its charging station or away
of it e.g., in another room.

Table 6 Robot Subsystem Energy Usage

State CPU FPGA Sensors Motors Network

Waiting Used Not used Not used Not used Used

Moving Used Used Used Used Used

Monitoring/Away Used Used Used Not used Used

Monitoring/Charging Used Used Used Not used Used

A more detailed description of the cases illustrated in the tables is presented below:

Waiting State: The FPGA can connect only to a ultra-low power wireless scanning device. When the

user or any other RADIO system wants to instruct the robot, it should first connect to this device, and

send a handshake command. This command is interpreted by the FPGA. For example, it can be used to

turn-on the CPU and perform a simple action. If more complex control is needed, e.g. a user request via

the tablet GUI, the CPU will turn on the network subsystem.

Table 7 Energy profile by using HW accelerators

State CPU FPGA Sensors Motors Network

Waiting On demand Used Not used Not used On demand

Moving Used Used Used Used Used

Monitoring/Away On demand Used Used Not used On demand

Monitoring/Charging Used Used Used Not used Used

 Monitoring/Away State: At this state the FPGA gets triggered by external events or continuously
monitors live sensor signals. Only when some (external or sensor) activity occurs, the HW

D4.3 Architecture for extending smart homes with robotic platform III

16

component in the FPGA will pre-process it and decide whether the CPU or/and the network
subsystem has to be turned on.

 Monitoring/Charging and Moving States: At these states we may not need to employ any on-
demand approach for the CPU and/or the network. However, having the dedicated hardware
components in the FPGA will allow some of the processing to be offloaded there, which also yields
considerable energy benefits.

The energy consumed at each state by each subsystem is not the same. For example, the CPU while

waiting can be clocked at lower frequency, drastically reducing the required power. Also, sensors and

FPGA can perform only basic data capture and processing when monitoring away from the charging

dock and revert to full-power processing mode when this power is available.

Although a number of such techniques are used, their impact on power consumption is not drastic in all

cases. To cope with this problem, our view is to develop dedicated hardware components that allow the

robot to turn-off complete subsystems in some cases; turning them on only on demand and just for the

short period when they are really needed. The goal is to have an improved energy profile. The results

of this analysis are depicted in Table 7.

To prototype and experiment with the alternative approach discussed in this paper, we selected a small

number of ADLs as target use cases for the monitoring state of the robot. The selected ADLs are the

ones which detect:

 The time needed by the patient to get out of bed: This ADL is based on image processing algorithms
that observe the patient while getting out of bed. The image processing algorithms can be parallelized
availing themselves from the acceleration within the FPGA hardware. The specific algorithm divides
the image into different regions. If the centre of mass of moving pixels over succeeding images lies
in one of these defined regions, an event is triggered. Thus, this algorithm is able to detect if a person
is sleeping, awake (but not going out of bed), and awake and standing up

 Picking up medication cups: The image processing methods used to detect this ADL benefit from
the acceleration through the FPGA hardware as they rely on a computational intensive algorithm

As noted, the HW acceleration does not involve the complete method, but rather focuses on early

detection of a high-possibility for an event so that SW-based processing can be invoked. Specifically,

in the context of the above-mentioned ADLs:

 For the time-to-stand-up ADL, the hardware component will collect and calculate data from all
regions, providing a trigger to software components when a given activity threshold is crossed

 For the cup-detection ADL, since this is manually triggered by the operator, hardware acceleration
is not related to the recognition but to the stabilization and centering of the image. It has been
observed through field trials that the robot can slightly move while waiting and this movement can
issue false positives. An always running HW component will be monitoring such small movements
and constantly re-centre the view

In order to determine the SW-HW co-design of the FPGA-ARM system, extensive profiling of the

image processing algorithms is needed. We profiled three flow options, so that the expected benefits of

various optimization approaches can be quantified, allowing focusing on these solutions that are more

beneficial (in terms of power consumption) in each case. The three analyzed options are:

 No offloading i.e., all processing is performed on the robot’s main processing unit (NUC)

 Offload on embedded ARM core of the FPGA; no HW acceleration

 Offload on dedicated low-level hardware blocks in the FPGA; ARM core can be powered down

To make a realistic profiling, we identified typical activity use cases with the help of non-technical
partners of the RADIO consortium. Each typical activity is depicted as a combination of five states for
the robot subsystem:

D4.3 Architecture for extending smart homes with robotic platform III

17

Figure 13 Daily activity profile

 Moving, where the robot is actually moving and uses its motor, sensors and camera

 Monitoring, where the robot is waiting for an event to be triggered by what it can see

 Sensing, where the robot is using its onboard sensors or communicates with smart home

 Processing, where heavy processing to analyze sensor and camera input is required

 Idle, where the robot is on but is doing nothing of the above

It is important to understand that a specific human activity (e.g., having lunch) will combine more
than one of the above states (e.g., looking, sensing, and processing).

By accumulating the energy needs at each activity, we are able to extract the daily activity profile in

terms of energy consumption as shown in Figure 13. More specifically, the data presented in Figure 13

were extracted by i) analyzing the daily activity patterns of the person(s) that is being monitored during

the whole day (24 hours) in their domestic environment and ii) conducting live measurements to

calculate the energy consumed in each discrete phase of the robot (consequently in each activity of the

target person) assuming that all data processing in performed in NUC. Finally, we should mention that

the daily activity patterns were collected by personal care-givers during the third pilot phase of the

RADIO project and represent the (averaged) activity patterns of three persons.

Power-Savings Results: The three options analyzed in the previous section are then tested on the

profile illustrated in Figure 13. Our target is to reveal the potential for maximizing battery life in terms

of reducing the required re-charges during the day; in other words, to increase the autonomy of the AAL

robot by using specialized hardware accelerators. The target areas are the points located in the lower

part of Figure 13 (juxtaposed the x-axis). These points correspond to the cases in which the robot is

either in the sensing or idle state waiting for an event to occur.

To this end, we performed a battery load calculation and our results are presented in Figure 14. The

vertical axis in Figure 14 shows the battery level of the robotic platform, whereas the horizontal axis

represents the day-time period (every dot point in the lines is associated to a battery-level measurement

taken every 15-minutes). There are three lines in the figure corresponding to the three studied offloading

policies: i) no offload (green line), ii) offload on the embedded ARM core of the FPGA (blue line), and

iii) offload on dedicated low-level hardware blocks in the FPGA (red line). Finally, in all cases, the

sharp ramp-ups indicate the battery charging periods.

D4.3 Architecture for extending smart homes with robotic platform III

18

Figure 14 Run-time depletion of robot battery and number of required charges for the three studied offloading policies

As Figure 14 indicates, our offloading policies are able to significantly increase the autonomy of the

robot. In our setup, the time required to charge the battery (from depletion to full capacity) is a 2-hours

period. As a result, in the “no-offloading” case, for a time-window equal to 4-hours, the robot is not

able to operate, thus it cannot follow the person to another room or most importantly it might miss

capturing important data that are relevant to a critical situation or emergency. In addition, the charging

periods coincide with periods of increased activity (as indicated by the results presented in Figure 12).

On the contrary, our offloading policies (e.g., when the wake-up decision logic is implemented in the

FPGA) manage to reduce the number of the required charges to one and to actually move the charging

period to a time-slot of reduced activity.

In the next section, we present our methodology to assess the autonomy of the robot for a given target

elderly or disable person and a given battery capacity.

5.2 Autonomy Estimator for AAL Robots

Having analyzed the strength of our profiling-based approach, we now present a practical, system level

approach to leverage the profiling analysis results. The goal is to quantify the battery resources of the

robot based on the profiling results of the person that is being monitored. To this end, Figure 15 depicts

a high-level representation of the proposed approach (realized in python code in our setup). The inputs

in this module are:

i) the profiling of the daily activities of the target person, and
ii) a diagram of the department of the target person

The output is a text file containing a set of robot autonomy-related parameters in the following format:

Battery {Ci, Chi, NAi},

where:

 Ci is the capacity of the battery measured in mAH

 Chi is the number of required charges in a daily basis

 NAi is the time period (measured in hours) that the robot is marked as non-available, thus it cannot
perform its designated tasks

D4.3 Architecture for extending smart homes with robotic platform III

19

Figure 15 Data flow and main processing steps in the autonomy estimator

Note that Ch and NA are not identical (qualitatively) because it is possible to locate the charging station

in a position that the robot is still able to provide useful feedback. In our analysis, we assume that the

location of the charging station is predefined, and it is considered as input to the battery estimator

(annotated in the design of the department). Finally, we also assume that only one charging dock exist

in the house premises. It is worthwhile to mention that the previous assumptions are not mandatory.

Our methodology can be easily extended to output one or more locations that would be more suitable

(in terms of power reductions) to locate the charging station. However, this direction is not considered

in this work.

5.2.1 Description of the Tool Main Stages

In the rest of this section, a description of the two main stages of the battery estimation tool is presented.

Stage 1: The data flow and processing steps of this stage are as follows:

[Input 1] Activity Patterns: This xml file (titled as xml_1 in Figure 14) contains a description of the

daily activities of the person being monitoring. In essence, this is a questionnaire filled by the personal

care-givers. In the context of this work, the questionnaires were collected during the third pilot phase

of the RADIO project. In particular, the care-giver recorded the activity patterns (e.g., watching TV,

meal preparation etc) of the target person every 15-minutes. The questionnaires of multiple days can be

collected and consolidated in order to end up with a more representative behavior of the target person.

The activities of the targeted end-users are selected among a predefined set of daily activities generated

with the help of the non-technical partners of the RADIO project.

[Input 2] Domestic Environment: The main purpose of this input is to capture the activity of the robot

mechanical subsystem i.e., when the robot must follow the person to another room. This information

might be provided in various formats, but in this work, we opted to represent this information in a

simple xml format. Moreover, we assumed that that each room is a rectangle, so the room information

can be easily formulated by two (x, y) pairs.

[Processing Phase]: In this phase, the previous two inputs are parsed and analyzed. The target is to

extract specific statistical results that will represent the summary of the daily activities of the target

person. The result of this processing step is two output files (in the form of xml files) that are described

below.

[Output 1]: The design of the person’s department is annotated with specific information based on the

analysis of the target person activity patterns. In particular, the questionnaire filled by the personal care-

giver is parsed in order to extract the specific locations within the house (bed, sofa, kitchen table etc.)

that the target person performs a specific daily activity. The distances (marked with red arrows in Figure

14; the distances are measured in meters) between the annotated house locations (marked as “A,” “B,”

“C,” and “D”) are then calculated. In case that there are multiple ways to move from a location “A” to

a location “B,” the shortest distance is considered (experimentally derived). The latter distance-related

D4.3 Architecture for extending smart homes with robotic platform III

20

information will be used in the next phase to account for the power consumed by the robot mechanical

system.

[Output 2]: The second intermediate output is an xml file that contains the following information: i)

how much time (measured in hours) the target person spent in a particular daily activity (e.g., watching

tv, meal preparation etc) and the associated house location(s); the location information is needed to

distinguish the case in which the robot is attached to the charging station, but it is still able to perform

its designated tasks and ii) how many times the target person moved between the annotated locations

included in the previous output file.

Stage 2: The two outputs of the previous stage are provided as inputs to the second stage of the AAL

autonomy estimator. The data flow and processing steps of the second stage are:

[Additional Input] Power Figures: Consequently, this xml file (titled as xml_3 in Figure 15) includes

the following power-related information: i) the power consumed in each of the five states of the robotic

subsystem (with and without the proposed FPGA-based offloading mechanism). The states are

described in Section 4 and they are: moving, monitoring, sensing, processing, and idle; Note that the

power figures of each discrete robot state are extracted by performing live, on-the-spot, measurements

in our laboratory and ii) a model of the (dis)charging behavior of the robot battery (a linear model is

assumed in this work).

[Processing Phase]: The main step of this phase is to associate (using a lookup table) each daily activity

(included in the second intermediate output file) to one or more states of the robotic platform. The latter

association is performed a priori (once for each robotic platform) and it is the result of the cooperation

among the technical and non-technical partners of the RADIO project. As noted, a specific human

activity (e.g., having lunch) might combine more than one of the robotic states (e.g., sensing, and

processing).

Having the time spent in each daily activity (included in the second intermediate output file) and the

power figure of each robotic state (included in the additional input of the second stage), then the battery

resources consumed during the day can be estimated. Finally, it should be mentioned that the power

consumed by the robot mechanical subsystem (part of the moving state of the robotic platform) is

calculated by taking into account, the distance-related information captured in the first intermediate

output file.

[Final Output]: The final output (rightmost part in Figure 15) is a cvs file targeting to quantify the

autonomy of the robot for a range of realistic battery capacity levels assuming the person profile shown

in Figure 13. An example screenshot is shown below:

Capacity | Offload | #of Charges | NA

2400mAH | NO | 5.54 | 9.42

2400mAH | YES | 2.79 | 3.91

...

4800mAH | NO | 2.79 | 3.91

4800mAH | YES | 1.74 | 2.27

...

9600mAH | NO | 0.97 | 1.16

9600mAH | YES | 0.68 | 0.82

...

Figure 16 Estimator output

D4.3 Architecture for extending smart homes with robotic platform III

21

The first column in the above screenshot depicts the studied battery capacity levels while the second

column shows if the HW FPGA-based acceleration mechanism is utilized. The third and fourth columns

illustrate the number of the required battery charges and the NA parameter (robot non-available; NA is

measured in hours) in a daily basis. As the screenshot indicates, our offloading technique is able to

decrease significantly the NA parameter in all battery levels. As expected, the impact of our offloading

technique is more pronounced in lower battery capacities.

The output of our tool can be used by the care-givers in order to end-up with safe conclusions
regarding the required battery (thus the autonomy) of the AAL robot. As a result, the burden of constant
monitoring (by a third person) of the elderly or disable person can be reduced (to the extent possible).

D4.3 Architecture for extending smart homes with robotic platform III

22

6 ACCELERATING IMAGE PROCESSING ALGORITHMS
The algorithm for monitoring the state of the patient is based on center of gravity calculation and can

be divided into 4 to 5 parts, depending on whether mark ups are activated or not. Figure 17 shows the

general functionality of the algorithm as schematic and as pseudocode.

1. Reading of the most recent image frame:

The image data is provided by the Asus Xtion Pro camera of the RADIO robot platform. The

image data is sent via USB directly to the NUC which publishes the received frames via its

robot operating system to the Avnet Picozed where it is processed. The image frame is then

read by the software and saved to a 3-dimensional array. The first two dimensions indicate the

pixels positions whereas the third dimension stores the color values of the RGB color channel.

Each color is coded with 8 bit, resulting 24 bit color payload. Given that the Asus Xtion Pro

camera provides images with the size of 640×480 pixels, the resulting array size is 640×480∙3

= 921600 or 900 KiB.

2. Detection of movement:

The algorithm loads to subsequent frames and compares both image frames with each other in

order to detect changes or movement within the two image frames. In order to reduce the

impact of small movements of the camera or image noise, the comparison does not only take

place on the subtracted image, but rather on blocks of pixels with the size 10×10.

Within these blocks the mean value of all subtracted color channels is calculated. If this value

exceeds a certain threshold, the respective block is flagged as active to show that a change has

occurred. While the person is moving out of the bed, the pixel blocks that detect movement

are highlighted in red.

3. Calculation of center of gravity:

After all blocks have either been detected as active or inactive, the center of gravity can be

calculated. In this case, the center of gravity is calculated through the mean value the

positions of all active blocks. Because the active blocks are positioned in the middle of the

image and in the lower right corner of the image, the center of gravity lies directly in the

between the detected hotspots of movement.

4. Evaluation of center of gravity:

Now that the position of the center of gravity has been determined, its position needs to be

analyzed and interpreted. If the y coordinate of the center of gravity exceeds a certain

threshold, the algorithm assumes that the observed person has gotten out of bed. Several of

these thresholds exist.

5. Drawing mark ups:

In order to optimize and help debug the algorithm, markups can be drawn into the image.

When drawing markups, all color values which differ more than the value 40 compared to the

prior frame are set to 70. If the pixels differ less than 40, the color values are quartered.

Additionally, the pixel within an active block will be colored red. This is done by adding the

value 128 to the red channel. This calculation is saturated, meaning that the resulting value

never exceeds 255.

D4.3 Architecture for extending smart homes with robotic platform III

23

Figure 17 Schematic view of the kernel design annotated with pseudocode

6.1.1 Profiling Results

In order to optimally accelerate the image processing algorithm with programmable hardware, the

compute intensive components need to be identified. This is done with the help of profiling. The Picozed

is a System on Chip with an dual core ARM Cortex A9 processor and integrated programmable

hardware. The image processing algorithm is first executed on the ARM processor. There, the

performance of the algorithm is determined and the potential hardware accelerated components are

identified. From the software side, the algorithm consists of several subblocks which are further

analyzed during the profiling. These are described in Table 8.

For every workitem: coloring of the block

For the first workitem: Calculate the mean value of the pixel value
differences and check/set if the block is „active“

For every workitem: Add all differential color values and highlight the
pixels if they exceed the threshold

Array with differential mean
values

D4.3 Architecture for extending smart homes with robotic platform III

24

Table 8 Subblocks of the algorithm

Profiled functions of the algorithm

Function name Task

copyToRGB Copy the received image data to a 3-dimensional array

checkBoxes
Calculate the mean value of the color value differences over the

last 2 frames and indicate the active blocks.

annotateBoxes
If markups are activated, indicate the pixel changes and highlight

the active blocks.

process_function
Calculates the center of gravity and determines its position. This

is the function that calls checkBoxes and annotateBoxes.

copyToImageData
Copy the processed image data from the 3-dimensional array to a

ROS compatible array for debug purposes.

For each profiling run, the algorithm is executed 20 times in order to mitigate the impact of outliers.

The used profiler is gprof and the results are presented in Figure 18 for the algorithm with markups and

in Figure 19 for the algorithm without markups.

Figure 18 Profiling results of the algortihm with activated markups

Figure 19 Profiling results of the algorithm without activated markups

As can be seen in both Figures, the algorithm spends most of total processing time in the checkBoxes

function. In the case with activated markups, the amount is 61.70% and 51.20% without activated

markups. Because the copyToImageData function is only required for debug purposes, this function

will not be implemented in the final algorithm design. Therefore, the timing value for this function is

ignored. In the case of activated markups, all the data required for the annotateBoxes function is

generated by the checkBoxes function. Because both functions are executed sequentially, it is possible

to generate hardware accelerators for both functions.

6.1.2 Hardware Accelerator Design

In order to efficiently switch between the algorithm with and without markup functionality, two

OpenCL kernels are designed. This enables an efficient implementation of only one query in order to

determine which kernel version will be executed. OpenCL kernels consist of workgroups and workitems.

In this case, a workgroup stands for one pixel block and a workitem stands for one pixel. The designed

kernel will then be called 640×480=307200 times for each pixel pair. The first step is to calculate the

D4.3 Architecture for extending smart homes with robotic platform III

25

difference of all color vlaues of each pixel pair in a workgroup. If the differential value exceeds the

value 40, the pixel value is set to 70, otherwise the value is divided by 4. As soon as each workitem of

a workgroup completes the differential calculation, the first workitem of the workgroup will calculate

the mean value of all workitems. The mean value is then saved to an external array which is accessible

by the CPU for further processing. If the mean value exceeds the threshold value of 30, the block will

be highlighted in red. Figure 20 shows the kernel implementation as schematic and as pseudocode.

Figure 20 Depiction of the implemented algorithm

The initial version of the OpenCL code can be generated with 100 MHz. Figure 21 shows the resource

requirements of the initial hardware version. This core is compared to a software implementation on the

dual core processor of the Picozed. The execution time of the algorithm on software takes approximately

17547 µs. The generated hardware requires 88404 µs, meaning the hardware accelerator requires 88404

µs ∙ 100 MHz= 8840400 cycles to execute the algorithm. This results in a speedup of 0.2. In order to

achieve an accelerator which actually accelerates the image processing algorithm, further optimization

steps have to be executed.

RGB-Array 1 RGB-Array 2

Loop column-wise over all blocks

Loop row-wise over all blocks

 Evaluation of sum of differences
 Mark block as active if applicable

Loop column-wise over all pixels per block

Loop row-wise over all pixels per block

 Sum all color value differences
 Mark changed pixels

Loop column-wise over all pixels per block

Loop row-wise over all pixels per block

 Perform colorization of complete block

if block is active:

RGB-Array 1
with mark-ups

Array with
differential

mean values

D4.3 Architecture for extending smart homes with robotic platform III

26

Figure 21 Resource uitilization of the initial OpenCL kernel

The first optimization step is to efficiently let the accelerator read the image data from the DDR memory.

This is done with the command async_work_group_copy. This command transmits a user defined

number of sequential bytes from memory via a burstmode to the accelerator. The transmission of one

frame is executed stepwise in order to reduce the resource usage of the BRAM on the programmable

hardware. Because one image always lies sequentially in memory, only one transmission command per

frame is required. After this step, the estimate cycles to complete the algorithm are in a range from

4729607 - 5712647 cycles, which means a performance improvement of 36% - 46% compared to the

initial implementation. This performance improvement however comes at the cost of an increased

resource utilization as can be seen in Figure 22. Here, the number of used BRAM blocks has increased

from 2 to 74 while all other resource remain almost constant.

Figure 22 Resource utilization of the OpenCL kernel after optimizing the data access

Because the number of required BRAMs is very high, the memory requirements of the accelerator are

reduced in the second optimization step. Currently, every color value is transmitted as a 4 Byte value

to the BRAMs although a 1 Byte value would suffice. Therefore, all three color values are stored in one

4 Byte value on the software side and then transmitted to the accelerator. This reduces the data

transmission by 2/3 from 14535 cycles to 4935 cycles. By performing this optimization, the

performance of the accelerator is increased while also reducing the resource utilization. This is shown

in Figure 23. The number of BRAMs is reduced from 74 to 42 and the LUT resource utilization is

reduced by 2% compared to the first optimization. The estimated cycle number is also further reduced

to 2272007 - 2947847 cycles which is an performance improvement of 52% compared to the first

optimization step.

D4.3 Architecture for extending smart homes with robotic platform III

27

Figure 23 Reosurce utilization of the OpenCl kernel after optimizng memory requirements

Since image processing algorithms perform many operations on each pixel individually, these operation

are executed in a loop. These loops can be parallelized on hardware. Parallelizing a loop can be done

through loop pipelining or through loop unrolling. While loop pipelining reuses the already available

components for parallelization, loop unrolling requires separate resources in order to increase the degree

of parallelism. Therefore, loop pipelining requires less additional resources than loop unrolling. The

algorithm has 5 loops that can benefit from either loop unrolling or loop pipelining, see Figure 20. In

the case of this algorithm, no performance difference is detected when using loop unrolling compared

to loop pipelining. Because loop pipelining requires less hardware resources, loop pipelining is used for

2 of the 5 loops. In the other 3 loops, no performance improvement was measured when employing

pipelining or unrolling techniques. Figure 24 shows the resource utilization when employing loop

pipelining for the algorithm. Through loop pipelining, the resource requirements of the BRAMs are

reduced even further from 42 to 38. The number of DSP blocks is also reduced from 4 to 1 and the FFs

are slightly increased as well as the LUT resource usage. This optimization further increased the

performance compared to the last optimization step, leading to cycle number of 1273607 - 1586951

which is an acceleration of 44%-46%.

Figure 24 Resource utilization of the OpenCL kernel after optimizing loop executions

After these three optimization steps, the accelerator is again compared to the software implementation

of the algorithm.

6.1.3 Evaluation

In order to evaluate the performance of the accelerator on the real hardware, the accelerator must first

be implemented on the PicoZed platform. This is done with the Vivado tool provided by Xilinx. The

accelerator must be connected to the processing system in order to receive the image data from the DDR

memory. Table 9 shows the execution times of the different implementation versions. For all

implementations, the clock frequency of 100 MHz is used. The ARM processor is running at 666 MHz.

D4.3 Architecture for extending smart homes with robotic platform III

28

It can be seen that the initial and up until the second optimization hardware version, the software version

outperforms the hardware implementation. This changes in the third optimization where the hardware

implementation reaches a speedup of 1.32 compared to the software version. All hardware

implementations can further increase their performance compared to the software implementation by

increasing the clock frequency.

Table 9: Measured execution times of each optimization step and of the software implementation

Execution times and Speedup compared to the Software implementation

Measurement platform Execution time Speedup

Software (ARM) 17547 µs 1

Initial Implementation 88404 µs 0.2

First optimization 48687 µs 0.37

Second Optimization 23401 µs 0.75

Third optimization 13290 µs 1.32

D4.3 Architecture for extending smart homes with robotic platform III

29

7 MANAGING THE RADIO COMPUTATION PLATFORM USING

SOFTWARE ANALYSIS TOOLS

This chapter describes the usage of several profiling tools in order to optimize the RADIO computation

platform.

7.1 Summary of D4.1 and D4.2

In deliverable D4.2, a proof of concept scenario for the hardware software co-design was presented

using the discrete cosine transform (DCT) kernel. This kernel consists of the 2D transformation and the

transpose calculation. These two parts exhibit vastly different behaviour when implemented on the

ARM and on the FPGA, see Table 10.

The performance of the 2D transformation and of the transpose calculation can be improved in both

cases. Depending on the optimization focus, a large design space has to be explored. Xilinx’ SDSoC is

a framework that supports this type of design space exploration. Therefore, this framework is being

exploited for further use in the RADIO project.

7.2 Designing a System of Distributed ROS Nodes

rostune is a tool that helps ROS developers distribute their nodes in the most effective way. It collects

and visualizes statistics for topics and nodes, such as CPU usage and network usage. rostune was

specifically developed for RADIO, to allow us to experiment (at development time) with the optimal

way to distribute nodes between the robot’s on-board computer and the computational units available

at the home. This need appears in indoors home assistance or industrial scenarios with good connectivity

and easy access to on-site computing units, where off-board computations can limit battery consumption.

The factors involved in this decision are the CPU and memory requirements of each node, bandwidth

requirements of each topic, and sensitivity to dropped frames. The visualization of these statistics assists

in understanding the dynamics of the system and of the exchange of messages between nodes, so that

ROS developers can make informed decisions about how to best distribute the ROS nodes between the

available processing units. rostune collects statistics with a minimal CPU, memory, and network usage

footprint of its own, it operates in both single-core and multi-core distributed ROS systems, and results

are collected and visualized in PlotJuggler, the Qt based application that visualizes ROS message

streams as a time series.4

Table 10 Latency and power profiling of DCT’s taskss

 CPU FPGA

2D transformation 1.93 ms 0.45 ms

Transpose calculation 0.09 ms 0.86 ms

4 rostune does not have a hard dependency on any particular visuzalization tool, but its output format is compatible

with PlotJuggler, http://www.ros.org/news/2017/01/new-package-plotjuggler.html

D4.3 Architecture for extending smart homes with robotic platform III

30

Laser scan analysis (blue plot) for tracking moving people can be efficiently executed off-board due its large

CPU requirements but small bandwidth footprint.

Figure 25: A characteristic example of CPU time (left) and bandwidth (right) usage.

This decision is based on prior requirements (such as the need to keep critical obstacle-avoidance nodes

on-board) but is also influenced by more dynamic considerations such as typical CPU and bandwidth

usage. Figure 25 shows a characteristic example from RADIO experiments: the CPU-intensive pattern

recognition algorithm for the 4m walking ADL can be efficiently executed off-board due its small

bandwidth footprint. This rather pronounced example could have been easily guessed, but there are also

subtler architectural decisions. Vision algorithms, for example, are both CPU and bandwidth-intensive

so it is not easy to decide without empirical evidence where along the vision processing pipeline is a

good point for transferring the processing off-board.

D4.3 Architecture for extending smart homes with robotic platform III

31

8 THE RADIO MAIN CONTROLLER

8.1 Architecture

The RADIO Main Controller is the main orchestrator of the behaviours of the RADIO Home and the

main keeper of the information collected and analysed by the various RADIO Home systems. Its

functionalities include:

 System orchestration

 Bridging between the different sub-systems

 Storing and serving ADL recognition results

The Main Controller is (physically) partially distributed between the home computer and the robot

computer, via a dual-ROS core architecture. This adds integration complexity compared to the earlier

single-ROS core RADIO architecture, but address the problem that:

 The Main Controller would be unable to operate with the robot turned off or having run out of

battery, if the robot’s computer executed the only ROS core process in the system.

 The bandwidth-hungry communication channels between the sensors and the perception

modules would have to use the wifi, if the home computer executed the only ROS core process

in the system.

 The Main Controller would be unable to operate with the robot turned off or having run out of

battery, if the robot’s computer executed the only ROS core process in the system.

 The bandwidth-hungry communication channels between the sensors and the perception

modules would have to use the wifi, if the home computer executed the only ROS core process

in the system.

8.2 Orchestration

The action and node manager orchestrates the overall system, including reacting to user initiatives

through the user device and initiating automated actions, except for home automation directly handled

by the S&C suite.5 Orchestration is implemented by sending control messages and by switching the

state of the perception and bridging nodes between “active” and “idle”. Idle nodes consume practically

no CPU resources (cf. Section 9.1), so the starting/stopping functionality was deprecated. Similarly, the

mechanism for monitoring ROS node execution has been converted to also use the state-reporting

services.

Action and node management is distributed between two nodes:

 The main node that executes at the home computer:

https://github.com/RADIO-PROJECT-EU/radio_node_manager_main_controller

 The robot-side node that executes at the robot’s on-board computer:

https://github.com/RADIO-PROJECT-EU/radio_node_manager

The main node relegates to the robot the distribution of control messages for the ROS nodes executing

on the robot. Only the main node is required for the operation of the overall RADIO Home, so that

functionalities not related to the robot remain active even if the robot is off-line or turned off.

8.3 ZWave and MQTT Network Bridges

The Main Controller bridges between the ROS middleware/wifi network and two other communication

infrastructures present in the RADIO Home:

5 The cloud-based S&C rule engine that implements pre-configured automations and the EnControl GUI for

monitoring sensors, see also D5.5 User Interfaces.

D4.3 Architecture for extending smart homes with robotic platform III

32

 The REST API to the ZWave network of home automation sensors and actuators, via the S&C

Gateway: https://github.com/RADIO-PROJECT-EU/snc_sensors_publisher

 The MQTT middleware used by the BLE network:

https://github.com/RADIO-PROJECT-EU/room_status_publisher

These components bridge between networks by simultaneously being REST/ROS client and

MQTT/ROS client, respectively.

T
h

e
co

lo
u
r

o
f

th
e

ar
ro

w
s

in
d

ic
at

es
 t

h
e

ty
p

e
o

f
d

at
a:

 r
ed

 i
s

u
se

d
 f

o
r

co
n

tr
o

l
si

g
n

al
s,

 e
it

h
er

 u
se

r
o

r
sy

st
em

 i
n

it
ia

te
d

;

g
re

en
 i

s
u

se
d

 f
o

r
ra

w
 d

at
a

an
d

 p
ri

m
ar

y
 p

er
ce

p
ti

o
n

 r
es

u
lt

s;
 b

lu
e

is
 u

se
d

 f
o

r
se

co
n

d
ar

y
/h

ig
h

 l
ev

el
 A

D
L

 r
ec

o
g
n

it
io

n

re
su

lt
s;

 b
la

ck
 i

s
u

se
d

 f
o

r
co

m
m

u
n

ic
at

io
n

 t
h

at
 t

h
is

 r
el

ev
an

t
to

 t
h

e
M

ai
n

 C
o

n
tr

o
ll

er
,

b
u

t
n

o
t

d
ir

ec
tl

y
 a

cc
es

se
d

 b
y

 t
h

e

M
ai

n
 C

o
n

tr
o

ll
er

.
T

h
e

th
ic

k
 a

rr
o

w
s

im
p

ly
 m

o
re

 v
o

lu
m

in
o

u
s

d
at

a.

Figure 26. Interconnections between the Main Controller, Turtlebot, and the home automation components.

D4.3 Architecture for extending smart homes with robotic platform III

33

8.4 ADL Recognition Wrappers and Report Generator

The ADL Wrappers are a collection of ROS nodes that are aware of the RADIO Home database schema

and of the semantics of the ROS messages published by the ADL recognition methods. These wrappers

listen to the ADL recognition methods and make, where necessary, calculations such as extracting a

duration from an event marking the start of an ADL and the matching event marking the completion of

the ADL. These wrappers output to a temporary, short-term database. This database is used by the

Report Generator to compute the daily or other aggregations that need to be reported and stored in the

long-term database.

 Wrapper for walking pattern recognition in rage data (D3.4, Section 2):

https://github.com/RADIO-PROJECT-EU/hpr_wrapper

 Wrapper for visual recognition of motion events (D3.4, Section 4):

https://github.com/RADIO-PROJECT-EU/motion_analysis_wrapper

 Wrapper for moving object tracking (D3.4, Section 3) and classification (D3.5, Section 2):

https://github.com/RADIO-PROJECT-EU/ros_visual_wrapper

 Wrapper for composite events that combine sensing across different networks

https://github.com/RADIO-PROJECT-EU/snc_events_wrapper

 Report Generator:

https://github.com/RADIO-PROJECT-EU/radio_report_generator

Similar wrappers will also be developed for the acoustic event recognition method (D3.5, Section 3)

and for the rules that extract events from the home automation sensors (D3.5, Section 4).

Table 5: Access levels and authentication for the RADIO Home database

Component
Access

Level
Authentication Explanation

RADIO

Home

components

Write

access

Only accessible from

the internal RADIO

Home network

The RADIO Home components that recognize

events update the event log.

Report

Generator

Read

access

SSL-based

authentication.

Read access for the formal caregiver of this

specific home, using conventional authentication

and access control mechanisms.

Notification

Generator

Read

access

Only accessible from

the internal RADIO

Home network

Filters the data for events that trigger

notifications.

RASSP Read

access

Only accessible from

the internal RADIO

Home network

The RADIO privacy-preserving data mining

component accesses all data to respond to queries

that observe the RASSP Protocol (cf. D5.6).

Access through RASSP guarantees that these

responses allow statistical aggregates to be

computed over many RADIO Homes without

revealing the values of any one of these Homes.

D4.3 Architecture for extending smart homes with robotic platform III

34

8.5 Data Services

The main requirements that must be satisfied by the technologies used originate from the nature of the

stored data and the nature of the consumers of those data. The output of the analysis algorithms (cf.

Section 5.2, D3.3 Conceptual Architecture) is the log of the recognized events annotated with the type

of the event, the actual time and date that the event occurred, and the duration or other measurement

associated with the event, if any.

Since the recognized events are recurrent this log forms essentially a set of time-series for each event

type. A time-series database is a database that is optimized for handling time series data, promoting

time as a first-class citizen and implement time-based operations in a more efficient way.

This database needs to provide access as foreseen in Table 5.

We used the InfluxDB database management system,6 an open source scalable time-series database that

targets use cases that heavily use time-based metrics and sensor data in the IoT context. The current

RADIO data schema contains a measurement (i.e., a database table) that includes all the higher-level

events produced by the RADIO Home analysis algorithms. This measurement has the following fields:

 event_type: the type of the event recognized, as tagged by the recognition algorithms, such as

“4m-walking”, “Sitting-to-Standing”

 time: the timestamp at which the event was recorded

 duration: the duration of the event, if applicable

6 Cf. https://www.influxdata.com

D4.3 Architecture for extending smart homes with robotic platform III

35

9 ROBOT BEHAVIOUR

9.1 Task Switching

The action and node manager orchestrates the overall system, including reacting to user initiatives

through the user device and initiating automated actions, except for home automation directly handled

by the S&C suite.

Orchestration was previously implemented by sending control messages and by starting and stopping

ROS nodes. For the final prototype, all orchestration is carried out by setting nodes in and out of an

“idle” state, where they are immediately available (i.e., the node process is executing) but they do not

consume and process any messages, they do not publish any message, and only use minimal processing

and network resources.

9.1.1 Motivation and Requirements

The orchestration system consists of two major parts:

1. The communication system between the node manager and the rest of the ADL-related nodes

that run in different machines (main controller - robot equivalently).

2. The methodology to start and stop each ADL based on a variety of scenarios.

Communication:

The communication inside the RADIO system was mainly based on ROS topics. ROS topics are code-

named channels that contain specific content. Many nodes (processes) can subscribe (listen) to the same

topic and also many nodes can publish (transmit data) to a topic. This architecture makes ROS topics

very easy to use, since anyone can connect to a specific channel and then acquire or transmit information.

Since ROS topics provide a many-to-many type of connection, they are more appropriate for data

streams, disregarding their ease of use. In our node handling scenario, what we really needed was a way

to send a start/stop signal from the main controller to the robot, to control the desired ADL related node.

Thus, what was really needed was a one-to-one communication. In an earlier version of the RADIO

orchestrator, the different nodes that made up the distributed Main Controller (Raspberry node, robot

node) communicated over a control topic. ROS services provide a one-to-one connection, in which

return data is possible. This provides a request-response protocol just like calling a method from within

the code.

Using ROS services enables us not only to safely transmit data to another node, but also get an answer

from them, ensuring the normal flow of the procedure. Of course, requiring a response after each service

call adds to the complexity of the system, but it is tolerable for the sake of robustness.

Starting/Stopping ADL nodes:

The management of ADL related nodes was based on starting and stopping their processes. This

included at least two processes for each ADL, one for the processing and one for the consumer of its

results (wrapper). In more extreme cases, like the 4-meter ADL, five processes had to be started/stopped

in total. Managing the flow of the system by starting and stopping nodes is neither the most elegant nor

the most efficient way. The problem of elegancy is pretty obvious: processes frequently starting and

stopping keeping the operating system busy, managing all those changes.

D4.3 Architecture for extending smart homes with robotic platform III

36

Figure 27: Time (in sec) to load executable, start the process, and connect to the ROS middleware.

Notes: Time measured for a relatively small and simple system of two nodes (joystick teleoperation receiver and velocity

smoother), available here: https://github.com/RADIO-PROJECT-EU/turtlebot/tree/master/turtlebot_teleop

Measurements are made on a NUC Intel Celeron @ 1.6GHz, 2GB memory, executables loaded from SSD, Ubuntu 14.04,

ROS Indigo, only executing the OS, the ROS Master, and one other node that generates traffic for the experiment node to

subscribe to. Measurements refer to the time from invoking node execution until the node has connected the ROS master,

i.e., time includes process setup time, time to establish network socket to the ROS master, and time to register as a

subscriber to a topic.

The efficiency problem lies not only on the added operating system activity, but also on the fact the

when a new ROS node starts, it takes approximately three to eight seconds for it to get registered to the

master and initialize its subscribers (Figure 27).

Utilizing the power of ROS Services, the latest version of the orchestration system was developed. In

this version, all ADL related nodes are always running and offer a service that can alter their state based

on received data. We will thoroughly discuss the architecture of this implementation in the next section.

Figure 28: Orchestration system Figure 29: Node architecture

D4.3 Architecture for extending smart homes with robotic platform III

37

9.1.2 Architecture

Figure 28 shows an abstract version of the current orchestration system. The Main Controller listens to

commands from user devices like gamepads and Android mobile phones and then informs the

corresponding nodes using ROS services. More specifically, the Raspberry Main Controller invokes the

Robot Instruction Receiver Service to relay to the robot’s Main Controller the ADL code that needs to

start or stop while simultaneously invokes the corresponding ADL wrapper’s Node State Service. When

the robot receives the message from the Main Controller, it also sends a message to the selected ADL

node with the desired state. All these messages between the Main Controller, the Robot and the ADL

related nodes along with their wrappers, are sent using ROS services. Each time, the input data is the

desired action, and the return value is the result of the requested process.

Figure 29 shows an abstract architecture of a node that is involved in the newly implemented ROS

service based state selection. In more detail, and as shown in the diagram, the node offers a service that

receives as an input the desired state, and returns its current state. The possibility to just request the

current state of each node, without altering its state has also been implemented. For example, a call on

a State Service with the generic type <Service Type> in Python, would look like this:

command = 1

state_service = rospy.ServiceProxy('hpr_wrapper/node_state_service', <ServiceType>)

new_state = service(command)

In the example above, the service 'hpr_wrapper/node_state_service' is the one provided by the 4-meter

walk ADL wrapper. The command sent is the number “1” which then is translated in the service

callback as a “Start message”, and enables the wrapper’s processing. Alternative command values for

all the wrapper nodes include “0” for a “Stop Message” and “-1” for no state change. All three

alternatives receive as an answer the current state of the node (running/idle).

Specifically, for ADL recording, some nodes apart from the desired state, also receive the ADL code

name and repetition. These extra parameters help in making the reports include human provided

codenames that can distinguish multiple recordings of the same ADL.

9.1.3 Implementation

The above has been implemented in the main controller (both Raspberry-side and robot-side node) and

in all ADL processing nodes and their wrappers:

Package name and description
Source code repository and release

implementing task switching

Node manager: The home computer-side node of the

Node Manager.

https://github.com/radio-project-

eu/radio_node_manager_main_controller
v2.0

Node manager: The robot-side node of the Node

Manager.

https://github.com/radio-project-

eu/radio_node_manager
v2.0

HumanPatterRecognition: Recognizes human

walking patterns in laser scans and tracks walking.

https://github.com/radio-project-

eu/HumanPatternRecognition
v3.0.0

HPR Wrapper: Uses HPR output to recognize and

time “walked 4m” events.

https://github.com/radio-project-

eu/hpr_wrapper
v2.0

https://github.com/radio-project-eu/radio_node_manager_main_controller
https://github.com/radio-project-eu/radio_node_manager_main_controller
https://github.com/radio-project-eu/radio_node_manager
https://github.com/radio-project-eu/radio_node_manager
https://github.com/radio-project-eu/HumanPatternRecognition
https://github.com/radio-project-eu/HumanPatternRecognition
https://github.com/radio-project-eu/hpr_wrapper
https://github.com/radio-project-eu/hpr_wrapper

D4.3 Architecture for extending smart homes with robotic platform III

38

ROSVisual: Tracks moving objects in the RGB/depth

modality and classifies motion as bed or chair transfer.

https://github.com/radio-project-

eu/ros_visual
v2.0

ROSVisual Wrapper: Uses the output from

ROSVisual to time chair and bed transfer events and

to recognize and time “walked 4m” events.

https://github.com/radio-project-

eu/ros_visual_wrapper

v2.0

Motion Analysis: Recognizes motion and classifies it

as “bed transfer” and “pill intake” events.

https://github.com/radio-project-

eu/motion_analysis
v2.0

Motion Analysis Wrapper: Uses the output from

motion analysis to time the bed transfer event.
https://github.com/radio-project-

eu/motion_analysis_wrapper
v2.0

Presence events: Uses the events published by the

ZWave/ROS bridge, to log ADLs (TV watching,

cooking, and presence events) inferred from the

presence sensors and appliance usage sensors.

https://github.com/radio-project-

eu/snc_events_wrapper

v1.0

Report generator: A ROS node that generates

medical reports based on the information created by

the wrappers.

https://github.com/radio-project-

eu/radio_report_generator

v1.0

Figure 30: CPU usage of one of the four nodes that are responsible for the 4-meter walk ADL, measurements made using

rostune

Generally, for all the nodes complete understanding of their internal data structure was needed, in order

to distinguish which of the values needed to re-initialize after each change of state, and which needed

to stay unmodified. The following nodes needed deeper adaptation than a simple implementation of the

state changing architecture:

https://github.com/radio-project-eu/ros_visual
https://github.com/radio-project-eu/ros_visual
https://github.com/radio-project-eu/ros_visual_wrapper
https://github.com/radio-project-eu/ros_visual_wrapper
https://github.com/radio-project-eu/motion_analysis
https://github.com/radio-project-eu/motion_analysis
https://github.com/radio-project-eu/motion_analysis_wrapper
https://github.com/radio-project-eu/motion_analysis_wrapper
https://github.com/radio-project-eu/snc_events_wrapper
https://github.com/radio-project-eu/snc_events_wrapper
https://github.com/radio-project-eu/radio_report_generator
https://github.com/radio-project-eu/radio_report_generator

D4.3 Architecture for extending smart homes with robotic platform III

39

4-meter walk ADL:

This ADL’s method consists of four ROS nodes that are connected using a linked chain model. These

nodes were at first designed to run specific tasks only during their initialization, so those parts of the

code had to be modified in order to run each time the nodes come on the “running” state. Since those

nodes are connected in a linked chain model, the first node in the chain has been given the ability to

enable all other three nodes, by using their provided state service. functionality of starting and pausing

their processing methods was much more complicated.

Bed Transfer ADL and Pill Intake ADL

The methods from these two ADLs are very sensitive to image changes, so their initialization should

take that into account. When the camera driver is polled for an image, there is a small stutter that could

cause the two ADLs to produce false results. Based on this observation, the two nodes first enter a

“semi-running” state, in which they are subscribed to the image topic, but do not produce results.

Although this process would not require more than one second, due to the possible network delay that

could occur in a clutter network, there is a five second gap between the transition from “semi-running”

to the “running” state.

9.1.4 Measurements

Figure 30 shows the CPU usage of one of the four nodes that are responsible for the 4-meter walk ADL.

At first, the node is in “running” state, which means that it has already received a message via its state

service. At approximately the 43rd second, the node received another message which made it set its

state to idle. This is a representative example of how all the other nodes behave, and also how few CPU

resources are consumed when idle.

When idle, the nodes unsubscribe from all their subscribed topics, completely nullifying network usage.

9.2 Navigation in Cluttered Spaces

At the First Integrated Robotic Platform (D4.6), robot navigation was based on the standard parameters

and configuration for navigation and obstacle avoidance. The following situation was occasionally

observed during the first round of pilots at FHAG: the robot would remember that a corridor was

congested with people and refuse to navigate to a goal that required passing through that corridor, even

after the congestion has cleared.

To address this, we added the provision that if the goal cannot be reached, previously discovered

obstacles that are currently not visible are removed from the costmap and the costmap is re-initialzed

from the static map, forcing the robot to double-check if the obstacles persist. The robot will only give

up after trying twice.

D4.3 Architecture for extending smart homes with robotic platform III

40

10 CONCLUSIONS

This deliverable presents the physical architecture of the RADIO Home, covering RADIO device

interconnection and interfacing, specifications on interfacing the different domains, and on fast and

energy efficient data processing in the distributed RADIO environment. More specifically, this

deliverable includes the design of the physical architecture of the RADIO Home, and especially the

wireless communications architecture between the RADIO Robot platform, the Smart Home devices,

and the Main Controller that make up each RADIO Home. Second, the design of the architecture and

the policies for managing the heterogeneous computing elements of the RADIO Home, including the

central server, FPGAs, and the on-board Robot controller. Special care was given in investigating the

most efficient way, in terms of power and delay overhead, to process different kinds of sensor data in

the distributed RADIO environment and in observing the privacy for the user.

With respect to communication substrate, the Robot interface is defined and implemented and the WiFi

and BLE connectivity is verified. The Z-Wave devices are able to be accessed through the RESTful

API in the Home Controller gateway. The backbone of the smart home architecture is the WIFI/LAN

interconnection between the router, robot, and RADIO Home Controller gateways. The router enables

the communication with the IoT Platform and the WIFI/LAN infrastructure enables the information

exchange between each component.

In addition as part of this work, alternative hardware and sensor positioning configurations are also

investigated as part of this task with the focus on power and performance trade-offs between fixed

function accelerators and more programmable (or even pure software) solutions. The programmable

solutions offer more flexibility to provide several dedicated services to the end-users through software

updates or extensions. However, fixed logic hardware solutions offer the significant advantage of

privacy for two main reasons: i) the sensors data are pre-processed and immediately destroyed and ii)

in case that further processing is required, this is performed on anonymized data (the outcome of the

pre-processing step).

Dedicated hardware components that include also special low power modes are implemented in the

Picozed FPGA. In the low power mode, only the FPGA is active and performing periodically sensor

update from the Python camera. The Python camera is directly connected to the FPGA hardware and

therefore does not require an additional processor for transferring image data to the programmable logic.

Therefore, all systems that are not required for camera usage can be put in sleep mode until the image

processing core in the Python camera chain wakes up all other systems.

A profile-driven, system-level approach to increase the autonomy of the robotic platform in AAL

environments is benchmarked in experimental conditions via use case profiling. Moreover, a systematic

methodology (realized as python tool) that outputs the autonomy of the robot for a range of battery

recourses is also described. The inputs in our methodology are the daily activity patterns of the target

elderly or disable people, information about the domestic environment, and the power figures of the

robotic platform (with and without HW FPGA-based offloading policies). The daily activity patterns

were collected by care-givers personnel during the third pilot phase of the RADIO project. The proposed

methodology is considered as a useful tool for estimating the required battery resources (consequently

the cost since it represents a significant part of the overall cost) of an AAL domestic robot.

Finally, this report documents work on improving the behaviour of the robotic platform and its

integration in the RADIO Home system. This includes improving the main controller, the main

orchestrator of the overall system, as well as the individual components so that they can be efficiently

activated and deactivated.

