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1 INTRODUCTION 

1.1 Purpose and Scope 

This deliverable is the physical architecture of the RADIO Home, covering RADIO device 

interconnection and interfacing, specifications on interfacing the different domains, and on fast and 

energy efficient data processing in the distributed RADIO environment. 

Within the scope of this document is: 

 To design the physical architecture of the RADIO Home, and especially the wireless 

communications architecture between the RADIO Robot platform, the Smart Home devices, 

and the Main Controller that make up each RADIO Home. 

 To design the architecture and the policies for managing the heterogeneous computing elements 

of the RADIO Home, including the central server, FPGAs, and the on-board Robot controller. 

Outside the scope of this document is the architecture (either conceptual or physical) of the 

communication between the RADIO Home and other nodes of the RADIO ecosystem, such as cloud 

storage components and components meant to be used by hospital personnel or informal care-givers. 

This will be dealt with in Task 5.1. 

1.2 Approach 

This deliverable documents work done in Task 4.1, which specifies and designs the interconnection 

structure and interfaces to exchange data between the home automation infrastructure and the robotic 

platform. This task also specifies the sensors and the processing units such as FPGAs, the Robot on-

board computer, or other computers on the premises which comprise the RADIO Home, i.e., the part of 

the overall RADIO system that is deployed within a single home. In addition, Task 4.1 tackles the 

following assignments: 

 Investigating the most efficient way, in terms of power and delay overhead, to process different 

kinds of sensor data in the distributed RADIO environment.  

 Observing privacy for the user. 

 Observing technical limitations such as bandwidth and processing power. 

 Striving for robustness through device redundancy. 

Alternative hardware and sensor positioning configurations are also investigated as part of this task with 

the focus on power and performance trade-offs between fixed function accelerators and more 

programmable (or even pure software) solutions. The programmable solutions offer more flexibility to 

provide several dedicated services to the end-users through software updates or extensions. However, 

fixed logic hardware solutions offer the significant advantage of privacy for two main reasons: i) 

the sensor data is pre-processed and immediately destroyed and ii) in case that further processing 

is required, this is performed on anonymized data (the outcome of the pre-processing step).  

We have extended the work done in D4.2 and D4.1 for this task as follows: 

 We finalized the Robot interface design for interconnecting the NUC and the PicoZed to the 

ROS environment. 

 No changes were conducted in the interconnection domains (Section 3). 

 We implemented a RADIO image processing algorithm in hardware and optimized its 

performance. The resource usage of the hardware block and of the complete designs are also 

evaluated. The implementation of the image processing algorithms was performed using three 
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Figure 1: Relation to other Work Packages and Deliverables 

 

different methods/tools: hardware-only implementation based on Verilog HDL code, through 

Xilinx Vivado HLS (high-level synthesis), and through HW-SW partitioning. 

 The system level energy savings approach proposed in D4.1 and D4.2 was refined and extended 

to include an energy estimator tool. The energy estimation approach is verified assuming 

specific usage scenarios that are further described in D4.9.  

The definition of the conceptual architecture in Task 4.1 has also allowed the consortium to refine the 

approach to WP4 as a whole and to establish the following work plan: 

 TWG and AVN will design the interface for data transfer and communication among network 

nodes, and design hardware modules’ interfaces with their respective infrastructural system 

components such as nodes or/and sensors. 

 TWG and S&C will ensure compatibility of the RADIO-prototyped components with the rest 

of the system through emulation or detailed analysis. 

 RUB and TWG will explore various hardware configurations and task mapping policies 

among all the processing units of the RADIO ecosystem in order to extract the best solution in 

terms of latency, power consumption, and area.  

 AVN and TWG will investigate system-level power savings modes taking as input the user 

behavior targeting to increase the autonomy of the Robot in terms of battery charges. 

 

1.3 Relation to other Work Packages and Deliverables 

This document is the third in a series of closely related deliverables. The final version due in M30 

(September 2017) is used to synchronize Task 4.1 with Task 4.2 and Task 4.3. The final version (M30) 

documents the architecture and interfacing of the final hardware components and robotic platform. 

This deliverable updates, extends deliverable D4.2. Because this is the final document of Task 4.1, it 

will also summarize all progress from the deliverable D4.1 and D4.2. Task 4.2 and Task 4.3 use the 

physical architecture developed in this deliverable for the final prototype of the RADIO architecture. 
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2 DEVICE INTERCONNECTION AND INTERFACING 

This chapter specifies the interconnection between the different devices within the smart home 

environment and defines how the respective devices interface with the smart home infrastructure. 

2.1 Summary of D4.1 and D4.2 

As introduced in deliverable D4.1, the smart home is comprised of several devices with different 

communication protocols. Figure 2 shows all available devices within the smart home environment and 

their respective interconnections. 

As seen in Figure 2, the robot requires WIFI and Bluetooth connectivity. The gateway is  a Raspberry 

Pi and requires Bluetooth, Z-Wave, and LAN interfaces. Because Bluetooth connectivity is required for 

both the gateway and the robot, deliverable D4.1 analysed the Bluetooth protocol in depth. This analysis 

helped drive development of the BLE communication. Several device options were also considered for 

usage on the gateway and the robot. These devices also served for debug purposes and easier 

development. Since the gateway functionality is implemented on a Raspberry Pi, the Z-Wave interface 

for the gateway is provided by the Razberry module for the Raspberry Pi. The Z-Wave devices are only 

able to communicate with the Z-Wave gateway and an external server, the IoT platform. The positions 

of the BLE devices and the Z-Wave devices were assumed to be in fixed positions. This potentially 

allowed the annotation of the robots map with the BLE devices.  

In deliverable D4.2, the BLE devices of the smart home environment should also support mobile BLE 

devices. These devices should be locatable by the robot. Therefore, accurate measurements of the 

received signal strength indication (RSSI) were required. When using the integrated Bluetooth and 

WIFI chip of the NUC, inconsistent results were achieved for the RSSI values at fixed positions. The 

cause of this was that the WIFI and Bluetooth signal interfered each other when the NUCs chip was 

used for both protocols simultaneously, see Figure 3. 

 

 

Figure 2: Device interconnection within the smart home environment 
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Figure 3 Spectrum of BLE and WIFI with interference 

In deliverable D4.2, the Z-Wave devices are now able to communicate with the other smart home 

devices and manage the network. Management of the network includes adding and removing devices, 

controlling the networks routing. These are handled by “function” commands. The Z-Wave device 

functions are controlled through “command” commands. Generally, the “command” command are 

either for user or for device configuration. Table 1 shows the commands that are accessible by external 

applications. 

Table 1: Z-Wave commands and their type 

External accessible functions 

Z-Wave command Type of Class 

sendData FUNCTION_CLASS 

AddNodetoNetwork FUNCTION_CLASS 

RemoveNodeFromNetwork FUNCTION_CLASS 

setValue FUNCTION_CLASS 

SetNodeLocation FUNCTION_CLASS 

SetNodeName FUNCTION_CLASS 

toggleActuatorSensor COMMAND_CLASS 

toggleDimmableSensor COMMAND_CLASS 

setThermostatSetPoint COMMAND_CLASS 

setThermostatMode COMMAND_CLASS 

setThermostatFanMode COMMAND_CLASS 
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Figure 4 Final device interconnection of the robot 

 

2.2 Final Robot Interface Design 

The main interface components of the robot is a wireless router form ASUS (see Figure 4 Final device 

interconnection of the robot). The router has connections to the Intel NUC, the PicoZed, and the Hokuyo 

Laser Scanner via Ethernet cables. This enables fast communication between all connected components. 

Additionally, no additional work is required for bridging an internet connection from the PicoZed to the 

NUC, thus increasing connection stability.  Additionally, the employment of the router removed the 

strong interference between the BLE and WIFI signals, because both interfaces are not used on the same 

chip and they are now spatially separated. Furthermore, the usage of a router enables the usage of the 

5 GHz WIFI band in case further signal interferences with BLE and Z-Wave occur. 
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3 SPECIFICATIONS ON INTERFACING THE DIFFERENT 

DOMAINS 

This chapter deals with the challenge of transferring data through several different protocol domains. 

No changes have occurred in this chapter for deliverable D4.3. 

3.1 Summary of D4.1 and D4.2 

In deliverable D4.1, we analyzed the interfacing requirements between the different protocol domains. 

Based on the results from Chapter 2, the protocol domains Bluetooth, Z-Wave, and WIFI were analyzed. 

Table 2 shows the summary of the specification for the cross domain interfaces for the Bluetooth 

domain. 

Table 2: Specification for the cross domain interfaces for the Bluetooth domain 

Bluetooth Domain Specification 

Cross domain interfaces Bluetooth – Z-Wave Bluetooth – WIFI/LAN 

Necessity not required required 

Participating entities Smart Home gateways 
Robot platform 

Smart Home gateways 

Information exchange 
commands for device 

manipulation 

None 

position, type of device, 

functionality, payload  

The Bluetooth domain interfaces with two different entities, the smart home gateway and the robot 

platform. While the Bluetooth-Z-Wave cross domain interface is not required, the Bluetooth-WIFI cross 

domain interface is required, in order to make the generated information by the Bluetooth devices 

available for the caregivers or the end-users. This can be either the position of the Bluetooth device, or 

context sensitive information.  

Table 3 shows the summary of the specification for the cross domain interfaces for the Z-Wave domain. 

Table 3: Specification for the cross domain interfaces for the Z-Wave domain 

Z-Wave Domain Specification 

Cross domain interfaces Z-Wave – Bluetooth Z-Wave – WIFI/LAN 

Necessity not required required 

Participating entities Smart Home gateways Smart Home gateways 

Information exchange 
commands for device 

manipulation 

position, type of device, 

functionality, payload  

The Z-Wave devices only interface with the smart home gateway. Therefore, it is possible for the Z-

Wave devices to communicate with the Bluetooth devices. In the context of the RADIO project, this is 

not required. Because the Z-Wave devices need to communicate and receive commands from the IoT 

platform, the Z-Wave-WIFI cross domain interface is required in order to ensure full functionality of 

the Z-Wave devices. 

Table 4 shows the summary of the specification for the cross domain interface of the WIFI/LAN domain. 

Table 4: Specification for the cross domain interfaces for the WIFI/LAN domain 
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WIFI/LAN Domain Specification 

Cross domain interfaces WIFI/LAN – Z-Wave WIFI/LAN – Bluetooth 

Necessity Required required 

Participating entities Smart Home gateways 
Robot platform 

Smart Home gateways 

Information exchange 
position, type of device, 

functionality, payload 

None 

position, type of device, 

functionality, payload  

Although the WIFI/LAN domain is only present between the gateways, the router and the robot platform, 

it is the most important domain, because it enables to relay the gathered information by each entity to 

the caregivers or the IoT platform. Therefore, the WIFI/LAN-Z-Wave cross domain interface and the 

WIFI/LAN-Bluetooth cross domain interface is required for the RADIO smart home environment. 

In deliverable D4.2, no changes had to be made in terms of the specification of the cross domain 

interfaces. 
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4 FAST AND ENERGY EFFICIENT DATA PROCESSING  

This chapter identifies the RADIO algorithms, which benefit from hardware acceleration. The 

corresponding hardware architecture is also introduced. Low power operation is also considered in the 

hardware architecture. 

4.1 Summary of D4.1 and D4.2  

In general, there are two types of data processed in the system: 

 High throughput streaming data created from continually receiving the output of a 

microphone (audio stream) or a camera (video stream) 

 Event or control-like data of relatively small size, collected by sensors. Event/measurement 

data can also be the outcome of streaming data analysis, e.g., processing of video can lead 

to the generation of an “exit” event if the camera looks towards the door 

The event/measurement data can be transferred within the smart home since their payload is small. The 

communication protocols used in the RADIO ecosystem do not have the bandwidth to transfer raw data 

streams such as image or audio streams continuously between different entities for processing. 

Additionally, transferring image or audio streams and not processing them locally poses a security risk. 

Therefore, the processing of the data streams should be performed locally on the robots PicoZed FPGA, 

see Figure 5. The PicoZed FPGA consists of an ARM Dual Core, a Neon vector processing engine and 

programmable hardware. The goal is to efficiently utilize all the available resources. 

 

Figure 5 A high level view of the on robot processing nodes 

The camera and microphone are directly connected to the FPGA platform, which then performs the pre- 

and post-processing tasks. The camera data streams will be continuously monitored by the processing 

elements of the FPGA platform and when activity is detected the corresponding algorithms (which can 

analyse and recognise the activity) will be triggered. Depending on the specific combination of 

algorithms that get triggered, some or all computational tasks may be executed in the processor (ARM 

cores) or accelerated with fixed logic or reconfigurable hardware components inserted in the FPGA 

reprogrammable logic. The algorithms required for both types of data streams can then be divided into 

a hardware and software component with the help of hardware software co-design tools. 

Possible hardware software co-design tools were identified as valgrind1, oprofile2, and vampir3. By 

combining these three tools, exploitation of instruction level parallelism is possible. Because several 

algorithms will run simultaneously on the RADIO robot platform, priorities of the different algorithms 

have to be considered. If the result of the algorithm is required immediately, the processing platform 

has to assign more processing resources to the respective algorithm. This requires scheduling algorithms 

that handle dynamically appearing tasks and static tasks. These challenges define the attributes of the 

task scheduler of the FPGA platform. 

                                                      
1 Valgrind Developers. http://valgrind.org, date of access: August 2015. 
2 OpenSource project. http://oprofile.sourceforge.net, date of access: August 2015. 
3 GWT-TUD GmbH. https://www.vampir.eu, date of access: August 2015. 
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Figure 6 Diagram illustrating the data flow between the ROBOT, gateway and IoT platform 

 

Figure 7 A high level view of the on robot processing nodes in D4.2 

The last topic covered in deliverable D4.1 is the distributed RADIO environment. The RADIO home 

environment is connected with remote elements of the RADIO ecosystem, like the IoT platform, 

through its gateway. The only exception to this rule is the RADIO robot which should have the 

possibility of directly communicating with the IoT platform and with the RADIO gateway if necessary, 

see Figure 6. 

The distributed sensors are usually connected directly to the gateway. A few sensors provide data 

important to the robot. These sensors are then connected to the robot, which then sends the data either 

to the gateway or directly to the IoT platform. In summary, Table relates the various data processing 

and transfer interface to the available domains. 

In deliverable D4.2, the processing of the data stream model was updated to incorporate the Intel NUC 

as data aggregation platform, see Figure 7. 

 

Table 5 Data Transfer and Process in relation to interfacing domains 

Data WIFI/LAN Z-Wave Bluetooth 

Sensor data needed for analysis of audio and/or 

video streams 
 (optional) X 

ADL and mood recognition event log generated 

by the analysis of streams 
X   

Sensor data that can be directly forwarded for 

remote processing 
 X Optional 

Robot location and status data X   
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Figure 8 State diagram highlighting different (power) modes 

The Intel NUC receives the data from the camera and the microphone, since the data is also required 

for localization and robot mapping. The Intel NUC then sends the data directly through ROS channels 

to the PicoZed. 

Deliverable D4.2 also expanded the concept of the distributed RADIO environment. The requirements 

of the RADIO environment are responsiveness and efficiency. Responsiveness means that the system 

reacts to stimulate in a certain amount of time. The time may vary depending on the stimulus. An 

exemplary state diagram of the robot is shown in Figure 8. 

This diagram highlights two points with green fonts where the smart home infrastructure triggers an 

entering event through a motion sensor. Several states also require large amounts of data processing 

that either can be performed with very low power consumption (i.e. follow the person, guiding or going 

to a place, time needed to stand up(gym), measure walking speed (gym)) or is executed when the robot 

is stationed on its charging station (i.e. time needed to stand up(in the room), measure walking speed 

(in the room)). 

4.2 Final Hardware Acceleration Architecture 

The hardware design has undergone several changes within the RADIO project. The final hardware 

architecture now has the ability to accelerate any kind of image or signal processing algorithm sent from 

the NUC, provided that the hardware accelerator for the specific algorithm is actually available. The 

complete hardware design is shown in Figure 9. 
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Figure 9 Complete hardware design for the RADIO FPGA 

 

Figure 10 Hardware acceleration for image processing algorithms 

This architecture supports the two function modes hardware acceleration and low power operation. 

A more detailed view of the hardware acceleration mode design is shown in Figure 10. 

The hardware accelerator is directly connected to the Zynq processing system via and AXI interconnect. 

The Zynq processing system receives the data from the Intel NUC over ROS messages. The payload of 

the ROS messages is sent to the hardware for processing. Depending on the algorithm, the hardware 

accelerator sends the results of the algorithm or the complete image back to the Zynq processing system 

for further processing. The hardware accelerator is connected to the AXI high performance port of the 

Zynq processing system. This allows fast data transfer between the processing system and the 

reconfigurable hardware which is required when performing image processing. 

The low power operation design is depicted in Figure 11. 
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Figure 11 Image processing core in the low power operation hardware chain 

In the low power operation mode, only the FPGA is active and performing periodically sensor update 

from the Python camera. This Python camera is directly connected to the FPGA hardware and therefore 

does not require an additional processor for transferring image data to the programmable logic. 

Therefore, all systems that are not required for camera usage can be put in sleep mode until the image 

processing core in the Python camera chain wakes up all other systems. 

4.3 The Role of a dedicated HW Component 

A HW accelerator component is a specially designed circuit which is implemented in FPGA (for 

configurability and future upgradability) and is connected directly to the other subsystems. The 

component is processing signals from sensors, so that simple decisions on whether other subsystems 

have to be employed or not can be devised. Typically, this component is equipped with the following 

functionality:  

 Triggering mechanism, which initiates sensor data capture and processing 

 Local Memory, which holds processed sensor data so that the main system RAM does not have 

to be used 

 Signal processing acceleration functions in FPGA 

 Control interfaces to turn-on and notify (or get notified by) other subsystems 

The dedicated HW components are implemented in the programmable logic (PL) of the Picozed APSoC 

using three different techniques: hardware-only implementation based on Verilog HDL code, through 

Xilinx Vivado HLS (high-level synthesis), and through HW-SW partitioning. More, specifically the 

first type of implementation is based on the traditional way of hardware development. In particular, the 

implementation is written using a HDL (Verilog in this work). This approach leads to the most efficient 

hardware components, but it is a time-consuming approach and most importantly it cannot take full 

advantage of the Zynq hardware and software features e.g., the dedicated memory controllers and the 

dedicated busses to move data from the software part (ARM processor) to the hardware part.  

On the other hand, an automated solution (e.g., our SDSoC based implementation; third hardware 

implementation performed in this work) is able to get advantage of the previous features and reduce 

significantly the development time, but the hardware modules are usually of medium quality (in terms 

of performance and power). As a result of this work, it was proved that the best solution is given by the 

Xilinx Vivado HLS (high-level synthesis) implementation. This is because, the HLS-based hardware 

design offers the possibility to take advantage of the various verified and fully optimized Xilinx 

components and as the same time it offers various parameters (in the form of pragmas in the C-code 

level) that can be used to optimize the design in terms of area, performance and/or power. So, based on 

this outcome, in the rest of this deliverable the HLS-based results (second implementation) will be 

mainly analyzed, since these results exhibit the best derived properties in terms of performance and 

power; the prime targets of the hardware component in the context of RADIO. Finally, it must be noted 

that all the three implementations (source files with the associated READMEs) have been uploaded in 

the github account of the project. More details about this can be found in D4.5. 
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Figure 12 ON Semiconductor’s PYTHON-1300 color image sensor 

 

4.4 Visual content processing and privacy 

The architecture presented Section 4.1 offers also significant advantages in terms of security and privacy. 

By attaching the sensors to a processing unit at the edge of the application, we are able to process the 

incoming data as a stream and thus there will not exist at any point in time raw images that can be read 

out by an attacker to compromise the data security of the application. All processing takes place in-

stream or in local inaccessible memory immediately at the sensor. Only abstract derivative information 

is extracted from the raw data and leaves the confines of the sensor. This means that no raw visual 

content is stored or transmitted within the RADIO Home network when we employ edge computing 

devices.  

The PicoZed FPGA represents such an edge computing device if an image sensor can be directly 

connected to the programmable logic of the PicoZed. The PicoZed consists of an ARM Dual Core, a 

Neon vector processing engine and the FPGA programmable hardware. A sensor, which can be directly 

connected to the programmable logic of the PicoZed is the PYTHON-1300 color image sensor that is 

depicted in Figure 12. 

The PYTHON-1300 is a 1/2 inch Super-eXtended Graphics Array (SXGA) CMOS image sensor with 

a resolution of 1280 by 1024 pixels. It is connected to the PicoZed over the carrier card’s FMC 

connector. This connector allows the direct connection to the programmable logic without going over 

the DDR memory or the ARM Dual cores of the PicoZed. Out of the box, the PYTHON-1300 is 

configured via software which we want to avoid in the RADIO project in order to ensure the patients 

visual data security. Therefore, the configuration cores of the PYTHON-1300 needed to be changed to 

be pre-configured in the bitstream so that the PYTHON-1300 is directly operational during the start-up 

of the PicoZed. To further protect the sensitive information, the pre-processing of the streaming data is 

performed in a fixed logic, hardware accelerator. 

The PYTHON-1300 outputs images at 60 Hz. For this frequency, the image stream needs to be 

processed at approximately 160 MHz. Therefore, the image processing hardware accelerator for the 

patient’s visual data security needed to be able to be clocked at the same frequency. However, the 

default frequency of the hardware accelerators (in general of typical FPGA designs) are generally 100 

MHz or lower.  

Thus, the hardware accelerator needed to be adapted to our requirements. This was done with the 

Vivado toolsuite from Xilinx. During hardware generation with Vivado HLS, several options exist to 

improve performance. Through pragma/directive usage, the time required for design space exploration 

is reduced.  
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One option to improve performance of the hardware is to replace the 32-Bit data types int and float with 

the 24-bit hardware efficient data types ap_int and ap_fixed. With hardware efficient data types, more 

operations can be executed in one cycle at the cost of additional hardware usage and less data needs to 

be transferred. This leads to a higher clock frequency and thus a faster overall computation time. 

However, by using hardware efficient data types, it is possible that the accelerator suffers from a 

reduced accuracy, which then would result in a larger number of iterations. With hardware efficient 

data types, the overall resources (DSP slices, flip flops) required by the hardware is increased. This 

effect is because now more logic per cycle is available through the hardware efficient data types. This 

leads to a faster performance but to a higher resource utilization. 

Another option to improve performance is to either merge, flatten, or unroll the loops of the algorithm. 

The choice for flattening, unrolling or merging the loops depends heavily on the loop itself (type of 

loop iterators) and need to be analyzed for every loop separately. By performing either one of these 

three optimization steps on the respective loops, the cycles can be even further reduced. 

By using Allocation Directives, it is possible to assign/map FPGA resources to specific operations. By 

limiting the number of available resources for the respective operations, hardware reuse can be achieved. 

The end result was that through the use of these performance improvement options, we were able to set 

the clock frequency of the hardware accelerator to the required 160 MHz.  

Another challenge we faced when implementing the visual security hardware on the PicoZed, was 

meeting the timing constraints of the overall design when inserting our hardware accelerator into the 

normal image stream flow of the PYTHON-1300. All devices need to be connected to the same clock 

from the same source for synchronicity reasons. However, the timing constraints of the overall design 

were not met when inserting our hardware accelerator and thus we were forced to clock gate several 

hardware blocks that did not directly influence the image stream flow over an additional clock source. 

This needed to be done over an additional AXI Interconnect that served as clock reference for the 

respective hardware blocks. 
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5 THE NEED FOR ENERGY EFFICIENT EXECUTION 

This chapter describes a scenario, which benefits from an energy efficient hardware architecture.   

5.1 Summary of D4.1 and D4.2 
The RADIO robot is a unit which has many energy-hungry subsystems. These are: 

 Main processor to control robot movement (NUC) 

 FPGA to accelerate ADL recognition methods 

 Sensors, especially the image sensor (camera) 

 Mechanical subsystem (motors) 

 Wireless subsystem (network) 

If all subsystems are always active, the RADIO robot needs to be recharged every few hours, which 

results in long periods of robot non-availability. As a first step, we had to understand how each 

subsystem is used and if it, indeed, needs to be active at each use case. Table 6 provides an overview, 

assuming that robot activity can be classified in the following states: 

 Waiting: at this state, the robot is not moving; neither is it processing sensor data. At this point, the 
robot is waiting to be triggered by some external event 

 Moving: when leading the way or following a person 

 Monitoring: at this state, the robot is not moving but it is processing sensor input data in order to 
detect an ADL or understand patient’s mood 

For some of these states, there is a difference on whether the robot is on its charging station or away 
of it e.g., in another room. 

Table 6 Robot Subsystem Energy Usage 

State CPU FPGA Sensors Motors Network 

Waiting Used Not used Not used Not used Used 

Moving Used Used Used Used Used 

Monitoring/Away Used Used Used Not used Used 

Monitoring/Charging Used Used Used Not used Used 
 

A more detailed description of the cases illustrated in the tables is presented below: 

Waiting State: The FPGA can connect only to a ultra-low power wireless scanning device. When the 

user or any other RADIO system wants to instruct the robot, it should first connect to this device, and 

send a handshake command. This command is interpreted by the FPGA. For example, it can be used to 

turn-on the CPU and perform a simple action. If more complex control is needed, e.g. a user request via 

the tablet GUI, the CPU will turn on the network subsystem. 

Table 7 Energy profile by using HW accelerators 

State CPU FPGA Sensors Motors Network 

Waiting On demand Used Not used Not used On demand 

Moving Used Used Used Used Used 

Monitoring/Away On demand Used Used Not used On demand 

Monitoring/Charging Used Used Used Not used Used 

 

 Monitoring/Away State: At this state the FPGA gets triggered by external events or continuously 
monitors live sensor signals. Only when some (external or sensor) activity occurs, the HW 
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component in the FPGA will pre-process it and decide whether the CPU or/and the network 
subsystem has to be turned on. 

 Monitoring/Charging and Moving States: At these states we may not need to employ any on-
demand approach for the CPU and/or the network. However, having the dedicated hardware 
components in the FPGA will allow some of the processing to be offloaded there, which also yields 
considerable energy benefits. 

The energy consumed at each state by each subsystem is not the same. For example, the CPU while 

waiting can be clocked at lower frequency, drastically reducing the required power. Also, sensors and 

FPGA can perform only basic data capture and processing when monitoring away from the charging 

dock and revert to full-power processing mode when this power is available.  

Although a number of such techniques are used, their impact on power consumption is not drastic in all 

cases. To cope with this problem, our view is to develop dedicated hardware components that allow the 

robot to turn-off complete subsystems in some cases; turning them on only on demand and just for the 

short period when they are really needed. The goal is to have an improved energy profile. The results 

of this analysis are depicted in Table 7. 

To prototype and experiment with the alternative approach discussed in this paper, we selected a small 

number of ADLs as target use cases for the monitoring state of the robot. The selected ADLs are the 

ones which detect: 

 The time needed by the patient to get out of bed: This ADL is based on image processing algorithms 
that observe the patient while getting out of bed. The image processing algorithms can be parallelized 
availing themselves from the acceleration within the FPGA hardware. The specific algorithm divides 
the image into different regions. If the centre of mass of moving pixels over succeeding images lies 
in one of these defined regions, an event is triggered. Thus, this algorithm is able to detect if a person 
is sleeping, awake (but not going out of bed), and awake and standing up 

 Picking up medication cups: The image processing methods used to detect this ADL benefit from 
the acceleration through the FPGA hardware as they rely on a computational intensive algorithm 

As noted, the HW acceleration does not involve the complete method, but rather focuses on early 

detection of a high-possibility for an event so that SW-based processing can be invoked. Specifically, 

in the context of the above-mentioned ADLs: 

 For the time-to-stand-up ADL, the hardware component will collect and calculate data from all 
regions, providing a trigger to software components when a given activity threshold is crossed 

 For the cup-detection ADL, since this is manually triggered by the operator, hardware acceleration 
is not related to the recognition but to the stabilization and centering of the image. It has been 
observed through field trials that the robot can slightly move while waiting and this movement can 
issue false positives. An always running HW component will be monitoring such small movements 
and constantly re-centre the view 

In order to determine the SW-HW co-design of the FPGA-ARM system, extensive profiling of the 

image processing algorithms is needed. We profiled three flow options, so that the expected benefits of 

various optimization approaches can be quantified, allowing focusing on these solutions that are more 

beneficial (in terms of power consumption) in each case. The three analyzed options are: 

 No offloading i.e., all processing is performed on the robot’s main processing unit (NUC) 

 Offload on embedded ARM core of the FPGA; no HW acceleration 

 Offload on dedicated low-level hardware blocks in the FPGA; ARM core can be powered down 

To make a realistic profiling, we identified typical activity use cases with the help of non-technical 
partners of the RADIO consortium. Each typical activity is depicted as a combination of five states for 
the robot subsystem: 
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Figure 13 Daily activity profile 

 Moving, where the robot is actually moving and uses its motor, sensors and camera 

 Monitoring, where the robot is waiting for an event to be triggered by what it can see 

 Sensing, where the robot is using its onboard sensors or communicates with smart home 

 Processing, where heavy processing to analyze sensor and camera input is required 

 Idle, where the robot is on but is doing nothing of the above 

It is important to understand that a specific human activity (e.g., having lunch) will combine more 
than one of the above states (e.g., looking, sensing, and processing). 

By accumulating the energy needs at each activity, we are able to extract the daily activity profile in 

terms of energy consumption as shown in Figure 13. More specifically, the data presented in Figure 13 

were extracted by i) analyzing the daily activity patterns of the person(s) that is being monitored during 

the whole day (24 hours) in their domestic environment and ii) conducting live measurements to 

calculate the energy consumed in each discrete phase of the robot (consequently in each activity of the 

target person) assuming that all data processing in performed in NUC. Finally, we should mention that 

the daily activity patterns were collected by personal care-givers during the third pilot phase of the 

RADIO project and represent the (averaged) activity patterns of three persons. 

Power-Savings Results: The three options analyzed in the previous section are then tested on the 

profile illustrated in Figure 13. Our target is to reveal the potential for maximizing battery life in terms 

of reducing the required re-charges during the day; in other words, to increase the autonomy of the AAL 

robot by using specialized hardware accelerators. The target areas are the points located in the lower 

part of Figure 13 (juxtaposed the x-axis). These points correspond to the cases in which the robot is 

either in the sensing or idle state waiting for an event to occur.  

To this end, we performed a battery load calculation and our results are presented in Figure 14. The 

vertical axis in Figure 14 shows the battery level of the robotic platform, whereas the horizontal axis 

represents the day-time period (every dot point in the lines is associated to a battery-level measurement 

taken every 15-minutes). There are three lines in the figure corresponding to the three studied offloading 

policies: i) no offload (green line), ii) offload on the embedded ARM core of the FPGA (blue line), and 

iii) offload on dedicated low-level hardware blocks in the FPGA (red line). Finally, in all cases, the 

sharp ramp-ups indicate the battery charging periods.  
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Figure 14 Run-time depletion of robot battery and number of required charges for the three studied offloading policies 

As Figure 14 indicates, our offloading policies are able to significantly increase the autonomy of the 

robot. In our setup, the time required to charge the battery (from depletion to full capacity) is a 2-hours 

period. As a result, in the “no-offloading” case, for a time-window equal to 4-hours, the robot is not 

able to operate, thus it cannot follow the person to another room or most importantly it might miss 

capturing important data that are relevant to a critical situation or emergency. In addition, the charging 

periods coincide with periods of increased activity (as indicated by the results presented in Figure 12). 

On the contrary, our offloading policies (e.g., when the wake-up decision logic is implemented in the 

FPGA) manage to reduce the number of the required charges to one and to actually move the charging 

period to a time-slot of reduced activity. 

In the next section, we present our methodology to assess the autonomy of the robot for a given target 

elderly or disable person and a given battery capacity. 

5.2 Autonomy Estimator for AAL Robots 

Having analyzed the strength of our profiling-based approach, we now present a practical, system level 

approach to leverage the profiling analysis results. The goal is to quantify the battery resources of the 

robot based on the profiling results of the person that is being monitored. To this end, Figure 15 depicts 

a high-level representation of the proposed approach (realized in python code in our setup). The inputs 

in this module are:  

i) the profiling of the daily activities of the target person, and 
ii) a diagram of the department of the target person 

The output is a text file containing a set of robot autonomy-related parameters in the following format: 

 

Battery {Ci, Chi, NAi},  

where: 

 Ci is the capacity of the battery measured in mAH 

 Chi is the number of required charges in a daily basis 

 NAi  is the time period (measured in hours) that the robot is marked as non-available, thus it cannot 
perform its designated tasks 
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Figure 15 Data flow and main processing steps in the autonomy estimator 

 

Note that Ch and NA are not identical (qualitatively) because it is possible to locate the charging station 

in a position that the robot is still able to provide useful feedback. In our analysis, we assume that the 

location of the charging station is predefined, and it is considered as input to the battery estimator 

(annotated in the design of the department). Finally, we also assume that only one charging dock exist 

in the house premises. It is worthwhile to mention that the previous assumptions are not mandatory. 

Our methodology can be easily extended to output one or more locations that would be more suitable 

(in terms of power reductions) to locate the charging station. However, this direction is not considered 

in this work.  

5.2.1 Description of the Tool Main Stages 

In the rest of this section, a description of the two main stages of the battery estimation tool is presented. 

Stage 1: The data flow and processing steps of this stage are as follows: 

[Input 1] Activity Patterns: This xml file (titled as xml_1 in Figure 14) contains a description of the 

daily activities of the person being monitoring. In essence, this is a questionnaire filled by the personal 

care-givers. In the context of this work, the questionnaires were collected during the third pilot phase 

of the RADIO project. In particular, the care-giver recorded the activity patterns (e.g., watching TV, 

meal preparation etc) of the target person every 15-minutes. The questionnaires of multiple days can be 

collected and consolidated in order to end up with a more representative behavior of the target person. 

The activities of the targeted end-users are selected among a predefined set of daily activities generated 

with the help of the non-technical partners of the RADIO project. 

[Input 2] Domestic Environment: The main purpose of this input is to capture the activity of the robot 

mechanical subsystem i.e., when the robot must follow the person to another room. This information 

might be provided in various formats, but in this work, we opted to represent this information in a 

simple xml format. Moreover, we assumed that that each room is a rectangle, so the room information 

can be easily formulated by two (x, y) pairs. 

[Processing Phase]: In this phase, the previous two inputs are parsed and analyzed. The target is to 

extract specific statistical results that will represent the summary of the daily activities of the target 

person. The result of this processing step is two output files (in the form of xml files) that are described 

below.  

[Output 1]: The design of the person’s department is annotated with specific information based on the 

analysis of the target person activity patterns. In particular, the questionnaire filled by the personal care-

giver is parsed in order to extract the specific locations within the house (bed, sofa, kitchen table etc.) 

that the target person performs a specific daily activity. The distances (marked with red arrows in Figure 

14; the distances are measured in meters) between the annotated house locations (marked as “A,” “B,” 

“C,” and “D”) are then calculated. In case that there are multiple ways to move from a location “A” to 

a location “B,” the shortest distance is considered (experimentally derived). The latter distance-related 
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information will be used in the next phase to account for the power consumed by the robot mechanical 

system. 

[Output 2]: The second intermediate output is an xml file that contains the following information: i) 

how much time (measured in hours) the target person spent in a particular daily activity (e.g., watching 

tv, meal preparation etc) and the associated house location(s); the location information is needed to 

distinguish the case in which the robot is attached to the charging station, but it is still able to perform 

its designated tasks and ii) how many times the target person moved between the annotated locations 

included in the previous output file. 

Stage 2: The two outputs of the previous stage are provided as inputs to the second stage of the AAL 

autonomy estimator. The data flow and processing steps of the second stage are:  

[Additional Input] Power Figures: Consequently, this xml file (titled as xml_3 in Figure 15) includes 

the following power-related information: i) the power consumed in each of the five states of the robotic 

subsystem (with and without the proposed FPGA-based offloading mechanism). The states are 

described in Section 4 and they are: moving, monitoring, sensing, processing, and idle; Note that the 

power figures of each discrete robot state are extracted by performing live, on-the-spot, measurements 

in our laboratory and ii) a model of the (dis)charging behavior of the robot battery (a linear model is 

assumed in this work). 

[Processing Phase]: The main step of this phase is to associate (using a lookup table) each daily activity 

(included in the second intermediate output file) to one or more states of the robotic platform. The latter 

association is performed a priori (once for each robotic platform) and it is the result of the cooperation 

among the technical and non-technical partners of the RADIO project. As noted, a specific human 

activity (e.g., having lunch) might combine more than one of the robotic states (e.g., sensing, and 

processing). 

Having the time spent in each daily activity (included in the second intermediate output file) and the 

power figure of each robotic state (included in the additional input of the second stage), then the battery 

resources consumed during the day can be estimated. Finally, it should be mentioned that the power 

consumed by the robot mechanical subsystem (part of the moving state of the robotic platform) is 

calculated by taking into account, the distance-related information captured in the first intermediate 

output file.  

[Final Output]: The final output (rightmost part in Figure 15) is a cvs file targeting to quantify the 

autonomy of the robot for a range of realistic battery capacity levels assuming the person profile shown 

in Figure 13. An example screenshot is shown below:  

 

 

Capacity  |  Offload  |  #of Charges  |   NA 

2400mAH   |     NO    |      5.54     | 9.42 

2400mAH   |    YES    |      2.79     | 3.91 

... 

4800mAH   |     NO    |      2.79     | 3.91 

4800mAH   |    YES    |      1.74     | 2.27 

... 

9600mAH   |     NO    |      0.97     | 1.16 

9600mAH   |    YES    |      0.68     | 0.82 

... 

Figure 16 Estimator output  
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The first column in the above screenshot depicts the studied battery capacity levels while the second 

column shows if the HW FPGA-based acceleration mechanism is utilized. The third and fourth columns 

illustrate the number of the required battery charges and the NA parameter (robot non-available; NA is 

measured in hours) in a daily basis. As the screenshot indicates, our offloading technique is able to 

decrease significantly the NA parameter in all battery levels. As expected, the impact of our offloading 

technique is more pronounced in lower battery capacities. 

The output of our tool can be used by the care-givers in order to end-up with safe conclusions 
regarding the required battery (thus the autonomy) of the AAL robot. As a result, the burden of constant 
monitoring (by a third person) of the elderly or disable person can be reduced (to the extent possible).  
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6 ACCELERATING IMAGE PROCESSING ALGORITHMS 
The algorithm for monitoring the state of the patient is based on center of gravity calculation and can 

be divided into 4 to 5 parts, depending on whether mark ups are activated or not. Figure 17 shows the 

general functionality of the algorithm as schematic and as pseudocode. 

 

1. Reading of the most recent image frame: 

The image data is provided by the Asus Xtion Pro camera of the RADIO robot platform. The 

image data is sent via USB directly to the NUC which publishes the received frames via its 

robot operating system to the Avnet Picozed where it is processed. The image frame is then 

read by the software and saved to a 3-dimensional array. The first two dimensions indicate the 

pixels positions whereas the third dimension stores the color values of the RGB color channel. 

Each color is coded with 8 bit, resulting 24 bit color payload. Given that the Asus Xtion Pro 

camera provides images with the size of 640×480 pixels, the resulting array size is 640×480∙3 

= 921600 or 900 KiB. 

2. Detection of movement: 

The algorithm loads to subsequent frames and compares both image frames with each other in 

order to detect changes or movement within the two image frames. In order to reduce the 

impact of small movements of the camera or image noise, the comparison does not only take 

place on the subtracted image, but rather on blocks of pixels with the size $10\times10$. 

Within these blocks the mean value of all subtracted color channels is calculated. If this value 

exceeds a certain threshold, the respective block is flagged as active to show that a change has 

occurred. While the person is moving out of the bed, the pixel blocks that detect movement 

are highlighted in red. 

3. Calculation of center of gravity: 

After all blocks have either been detected as active or inactive, the center of gravity can be 

calculated. In this case, the center of gravity is calculated through the mean value the 

positions of all active blocks. Because the active blocks are positioned in the middle of the 

image and in the lower right corner of the image, the center of gravity lies directly in the 

between the detected hotspots of movement. 

4. Evaluation of center of gravity: 

Now that the position of the center of gravity has been determined, its position needs to be 

analyzed and interpreted. If the y coordinate of the center of gravity exceeds a certain 

threshold, the algorithm assumes that the observed person has gotten out of bed. Several of 

these thresholds exist.  

5. Drawing mark ups: 

In order to optimize and help debug the algorithm, markups can be drawn into the image. 

When drawing markups, all color values which differ more than the value 40 compared to the 

prior frame are set to 70. If the pixels differ less than 40, the color values are quartered. 

Additionally, the pixel within an active block will be colored red. This is done by adding the 

value 128 to the red channel. This calculation is saturated, meaning that the resulting value 

never exceeds 255. 
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Figure 17 Schematic view of the kernel design annotated with pseudocode 

6.1.1 Profiling Results 

In order to optimally accelerate the image processing algorithm with programmable hardware, the 

compute intensive components need to be identified. This is done with the help of profiling. The Picozed 

is a System on Chip with an dual core ARM Cortex A9 processor and integrated programmable 

hardware. The image processing algorithm is first executed on the ARM processor. There, the 

performance of the algorithm is determined and the potential hardware accelerated components are 

identified. From the software side, the algorithm consists of several subblocks which are further 

analyzed during the profiling. These are described in Table 8. 

 

 

For every workitem: coloring of the block

For the first workitem: Calculate the mean value of the pixel value 
differences and check/set if the block is „active“

For every workitem: Add all differential color values and highlight the 
pixels if they exceed the threshold

Array with differential mean 
values
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Table 8 Subblocks of the algorithm 

Profiled functions of the algorithm 

Function name Task 

copyToRGB Copy the received image data to a 3-dimensional array 

checkBoxes 
Calculate the mean value of the color value differences over the 

last 2 frames and indicate the active blocks. 

annotateBoxes 
If markups are activated, indicate the pixel changes and highlight 

the active blocks. 

process_function 
Calculates the center of gravity and determines its position. This 

is the function that calls checkBoxes and annotateBoxes. 

copyToImageData 
Copy the processed image data from the 3-dimensional array to a 

ROS compatible array for debug purposes. 

For each profiling run, the algorithm is executed 20 times in order to mitigate the impact of outliers. 

The used profiler is gprof and the results are presented in Figure 18 for the algorithm with markups and 

in Figure 19 for the algorithm without markups. 

 

Figure 18 Profiling results of the algortihm with activated markups 

 

Figure 19 Profiling results of the algorithm without activated markups 

As can be seen in both Figures, the algorithm spends most of total processing time in the checkBoxes 

function. In the case with activated markups, the amount is 61.70% and 51.20% without activated 

markups. Because the copyToImageData function is only required for debug purposes, this function 

will not be implemented in the final algorithm design. Therefore, the timing value for this function is 

ignored. In the case of activated markups, all the data required for the annotateBoxes function is 

generated by the checkBoxes function. Because both functions are executed sequentially, it is possible 

to generate hardware accelerators for both functions. 

6.1.2 Hardware Accelerator Design 

In order to efficiently switch between the algorithm with and without markup functionality, two 

OpenCL kernels are designed. This enables an efficient implementation of only one query in order to 

determine which kernel version will be executed. OpenCL kernels consist of workgroups and workitems. 

In this case, a workgroup stands for one pixel block and a workitem stands for one pixel. The designed 

kernel will then be called 640×480=307200 times for each pixel pair. The first step is to calculate the 
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difference of all color vlaues of each pixel pair in a workgroup. If the differential value exceeds the 

value 40, the pixel value is set to 70, otherwise the value is divided by 4. As soon as each workitem of 

a workgroup completes the differential calculation, the first workitem of the workgroup will calculate 

the mean value of all workitems. The mean value is then saved to an external array which is accessible 

by the CPU for further processing. If the mean value exceeds the threshold value of 30, the block will 

be highlighted in red. Figure 20 shows the kernel implementation as schematic and as pseudocode. 

 

Figure 20 Depiction of the implemented algorithm 

The initial version of the OpenCL code can be generated with 100 MHz. Figure 21 shows the resource 

requirements of the initial hardware version. This core is compared to a software implementation on the 

dual core processor of the Picozed. The execution time of the algorithm on software takes approximately 

17547 µs. The generated hardware requires 88404 µs, meaning the hardware accelerator requires 88404 

µs ∙ 100 MHz= 8840400 cycles to execute the algorithm. This results in a speedup of 0.2. In order to 

achieve an accelerator which actually accelerates the image processing algorithm, further optimization 

steps have to be executed. 

RGB-Array 1 RGB-Array 2

Loop column-wise over all blocks

Loop row-wise over all blocks

 Evaluation of sum of differences
 Mark block as active if applicable

Loop column-wise over all pixels per block 

Loop row-wise over all pixels per block

 Sum all color value differences
 Mark changed pixels 

Loop column-wise over all pixels per block 

Loop row-wise over all pixels per block

 Perform colorization of complete block

if block is active:

RGB-Array 1 
with mark-ups

Array with 
differential 

mean values
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Figure 21 Resource uitilization of the initial OpenCL kernel 

The first optimization step is to efficiently let the accelerator read the image data from the DDR memory. 

This is done with the command async_work_group_copy. This command transmits a user defined 

number of sequential bytes from memory via a burstmode to the accelerator. The transmission of one 

frame is executed stepwise in order to reduce the resource usage of the BRAM on the programmable 

hardware. Because one image always lies sequentially in memory, only one transmission command per 

frame is required. After this step, the estimate cycles to complete the algorithm are in a range from 

4729607 - 5712647 cycles, which means a performance improvement of 36% - 46% compared to the 

initial implementation. This performance improvement however comes at the cost of an increased 

resource utilization as can be seen in Figure 22. Here, the number of used BRAM blocks has increased 

from 2 to 74 while all other resource remain almost constant. 

 

Figure 22 Resource utilization of the OpenCL kernel after optimizing the data access 

Because the number of required BRAMs is very high, the memory requirements of the accelerator are 

reduced in the second optimization step. Currently, every color value is transmitted as a 4 Byte value 

to the BRAMs although a 1 Byte value would suffice. Therefore, all three color values are stored in one 

4 Byte value on the software side and then transmitted to the accelerator. This reduces the data 

transmission by 2/3 from 14535 cycles to 4935 cycles. By performing this optimization, the 

performance of the accelerator is increased while also reducing the resource utilization. This is shown 

in Figure 23. The number of BRAMs is reduced from 74 to 42 and the LUT resource utilization is 

reduced by 2% compared to the first optimization. The estimated cycle number is also further reduced 

to 2272007 - 2947847 cycles which is an performance improvement of 52% compared to the first 

optimization step. 
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Figure 23 Reosurce utilization of the OpenCl kernel after optimizng memory requirements 

Since image processing algorithms perform many operations on each pixel individually, these operation 

are executed in a loop. These loops can be parallelized on hardware. Parallelizing a loop can be done 

through loop pipelining or through loop unrolling. While loop pipelining reuses the already available 

components for parallelization, loop unrolling requires separate resources in order to increase the degree 

of parallelism. Therefore, loop pipelining requires less additional resources than loop unrolling. The 

algorithm has 5 loops that can benefit from either loop unrolling or loop pipelining, see Figure 20. In 

the case of this algorithm, no performance difference is detected when using loop unrolling compared 

to loop pipelining. Because loop pipelining requires less hardware resources, loop pipelining is used for 

2 of the 5 loops. In the other 3 loops, no performance improvement was measured when employing 

pipelining or unrolling techniques. Figure 24 shows the resource utilization when employing loop 

pipelining for the algorithm. Through loop pipelining, the resource requirements of the BRAMs are 

reduced even further from 42 to 38. The number of DSP blocks is also reduced from 4 to 1 and the FFs 

are slightly increased as well as the LUT resource usage. This optimization further increased the 

performance compared to the last optimization step, leading to cycle number of 1273607 - 1586951 

which is an acceleration of 44%-46%.  

 

Figure 24 Resource utilization of the OpenCL kernel after optimizing loop executions 

After these three optimization steps, the accelerator is again compared to the software implementation 

of the algorithm. 

6.1.3 Evaluation 

In order to evaluate the performance of the accelerator on the real hardware, the accelerator must first 

be implemented on the PicoZed platform. This is done with the Vivado tool provided by Xilinx. The 

accelerator must be connected to the processing system in order to receive the image data from the DDR 

memory. Table 9 shows the execution times of the different implementation versions. For all 

implementations, the clock frequency of 100 MHz is used. The ARM processor is running at 666 MHz. 
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It can be seen that the initial and up until the second optimization hardware version, the software version 

outperforms the hardware implementation. This changes in the third optimization where the hardware 

implementation reaches a speedup of 1.32 compared to the software version. All hardware 

implementations can further increase their performance compared to the software implementation by 

increasing the clock frequency. 

Table 9: Measured execution times of each optimization step and of the software implementation 

Execution times and Speedup compared to the Software implementation 

Measurement platform Execution time Speedup 

Software (ARM) 17547 µs 1 

Initial Implementation 88404 µs 0.2 

First optimization 48687 µs 0.37 

Second Optimization 23401 µs 0.75 

Third optimization 13290 µs 1.32 
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7 MANAGING THE RADIO COMPUTATION PLATFORM USING 

SOFTWARE ANALYSIS TOOLS 

This chapter describes the usage of several profiling tools in order to optimize the RADIO computation 

platform. 

7.1 Summary of D4.1 and D4.2 

In deliverable D4.2, a proof of concept scenario for the hardware software co-design was presented 

using the discrete cosine transform (DCT) kernel. This kernel consists of the 2D transformation and the 

transpose calculation. These two parts exhibit vastly different behaviour when implemented on the 

ARM and on the FPGA, see Table 10.  

The performance of the 2D transformation and of the transpose calculation can be improved in both 

cases. Depending on the optimization focus, a large design space has to be explored. Xilinx’ SDSoC is 

a framework that supports this type of design space exploration. Therefore, this framework is being 

exploited for further use in the RADIO project. 

7.2 Designing a System of Distributed ROS Nodes 

rostune is a tool that helps ROS developers distribute their nodes in the most effective way. It collects 

and visualizes statistics for topics and nodes, such as CPU usage and network usage. rostune was 

specifically developed for RADIO, to allow us to experiment (at development time) with the optimal 

way to distribute nodes between the robot’s on-board computer and the computational units available 

at the home. This need appears in indoors home assistance or industrial scenarios with good connectivity 

and easy access to on-site computing units, where off-board computations can limit battery consumption. 

The factors involved in this decision are the CPU and memory requirements of each node, bandwidth 

requirements of each topic, and sensitivity to dropped frames. The visualization of these statistics assists 

in understanding the dynamics of the system and of the exchange of messages between nodes, so that 

ROS developers can make informed decisions about how to best distribute the ROS nodes between the 

available processing units. rostune collects statistics with a minimal CPU, memory, and network usage 

footprint of its own, it operates in both single-core and multi-core distributed ROS systems, and results 

are collected and visualized in PlotJuggler, the Qt based application that visualizes ROS message 

streams as a time series.4 

 

 

Table 10 Latency and power profiling of DCT’s taskss 

 CPU FPGA 

2D transformation 1.93 ms 0.45 ms 

Transpose calculation 0.09 ms 0.86 ms 

 

                                                      
4 rostune does not have a hard dependency on any particular visuzalization tool, but its output format is compatible 

with PlotJuggler, http://www.ros.org/news/2017/01/new-package-plotjuggler.html  
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Laser scan analysis (blue plot) for tracking moving people can be efficiently executed off-board due its large 

CPU requirements but small bandwidth footprint. 

Figure 25: A characteristic example of CPU time (left) and bandwidth (right) usage. 

 

This decision is based on prior requirements (such as the need to keep critical obstacle-avoidance nodes 

on-board) but is also influenced by more dynamic considerations such as typical CPU and bandwidth 

usage. Figure 25 shows a characteristic example from RADIO experiments: the CPU-intensive pattern 

recognition algorithm for the 4m walking ADL can be efficiently executed off-board due its small 

bandwidth footprint. This rather pronounced example could have been easily guessed, but there are also 

subtler architectural decisions. Vision algorithms, for example, are both CPU and bandwidth-intensive 

so it is not easy to decide without empirical evidence where along the vision processing pipeline is a 

good point for transferring the processing off-board. 
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8 THE RADIO MAIN CONTROLLER 

8.1 Architecture 

The RADIO Main Controller is the main orchestrator of the behaviours of the RADIO Home and the 

main keeper of the information collected and analysed by the various RADIO Home systems. Its 

functionalities include: 

 System orchestration 

 Bridging between the different sub-systems 

 Storing and serving ADL recognition results 

The Main Controller is (physically) partially distributed between the home computer and the robot 

computer, via a dual-ROS core architecture. This adds integration complexity compared to the earlier 

single-ROS core RADIO architecture, but address the problem that: 

 The Main Controller would be unable to operate with the robot turned off or having run out of 

battery, if the robot’s computer executed the only ROS core process in the system. 

 The bandwidth-hungry communication channels between the sensors and the perception 

modules would have to use the wifi, if the home computer executed the only ROS core process 

in the system. 

 The Main Controller would be unable to operate with the robot turned off or having run out of 

battery, if the robot’s computer executed the only ROS core process in the system. 

 The bandwidth-hungry communication channels between the sensors and the perception 

modules would have to use the wifi, if the home computer executed the only ROS core process 

in the system. 

8.2 Orchestration 

The action and node manager orchestrates the overall system, including reacting to user initiatives 

through the user device and initiating automated actions, except for home automation directly handled 

by the S&C suite.5 Orchestration is implemented by sending control messages and by switching the 

state of the perception and bridging nodes between “active” and “idle”. Idle nodes consume practically 

no CPU resources (cf. Section 9.1), so the starting/stopping functionality was deprecated. Similarly, the 

mechanism for monitoring ROS node execution has been converted to also use the state-reporting 

services. 

Action and node management is distributed between two nodes: 

 The main node that executes at the home computer: 

https://github.com/RADIO-PROJECT-EU/radio_node_manager_main_controller 

 The robot-side node that executes at the robot’s on-board computer: 

https://github.com/RADIO-PROJECT-EU/radio_node_manager 

The main node relegates to the robot the distribution of control messages for the ROS nodes executing 

on the robot. Only the main node is required for the operation of the overall RADIO Home, so that 

functionalities not related to the robot remain active even if the robot is off-line or turned off. 

8.3 ZWave and MQTT Network Bridges 

The Main Controller bridges between the ROS middleware/wifi network and two other communication 

infrastructures present in the RADIO Home: 

                                                      
5 The cloud-based S&C rule engine that implements pre-configured automations and the EnControl GUI for 

monitoring sensors, see also D5.5 User Interfaces. 



 

D4.3 Architecture for extending smart homes with robotic platform III 

 

32 

 

 The REST API to the ZWave network of home automation sensors and actuators, via the S&C 

Gateway: https://github.com/RADIO-PROJECT-EU/snc_sensors_publisher 

 The MQTT middleware used by the BLE network: 

https://github.com/RADIO-PROJECT-EU/room_status_publisher 

These components bridge between networks by simultaneously being REST/ROS client and 

MQTT/ROS client, respectively. 
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Figure 26. Interconnections between the Main Controller, Turtlebot, and the home automation components. 
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8.4 ADL Recognition Wrappers and Report Generator 

The ADL Wrappers are a collection of ROS nodes that are aware of the RADIO Home database schema 

and of the semantics of the ROS messages published by the ADL recognition methods. These wrappers 

listen to the ADL recognition methods and make, where necessary, calculations such as extracting a 

duration from an event marking the start of an ADL and the matching event marking the completion of 

the ADL. These wrappers output to a temporary, short-term database. This database is used by the 

Report Generator to compute the daily or other aggregations that need to be reported and stored in the 

long-term database. 

 Wrapper for walking pattern recognition in rage data (D3.4, Section 2): 

https://github.com/RADIO-PROJECT-EU/hpr_wrapper 

 Wrapper for visual recognition of motion events (D3.4, Section 4): 

https://github.com/RADIO-PROJECT-EU/motion_analysis_wrapper 

 Wrapper for moving object tracking (D3.4, Section 3) and classification (D3.5, Section 2): 

https://github.com/RADIO-PROJECT-EU/ros_visual_wrapper 

 Wrapper for composite events that combine sensing across different networks 

https://github.com/RADIO-PROJECT-EU/snc_events_wrapper 

 Report Generator: 

https://github.com/RADIO-PROJECT-EU/radio_report_generator 

Similar wrappers will also be developed for the acoustic event recognition method (D3.5, Section 3) 

and for the rules that extract events from the home automation sensors (D3.5, Section 4). 

 

Table 5: Access levels and authentication for the RADIO Home database 

Component 
Access 

Level 
Authentication Explanation 

RADIO 

Home 

components 

Write 

access 

Only accessible from 

the internal RADIO 

Home network 

The RADIO Home components that recognize 

events update the event log. 

Report 

Generator 

Read 

access 

SSL-based 

authentication. 

Read access for the formal caregiver of this 

specific home, using conventional authentication 

and access control mechanisms. 

Notification 

Generator 

Read 

access 

Only accessible from 

the internal RADIO 

Home network 

Filters the data for events that trigger 

notifications. 

RASSP Read 

access 

Only accessible from 

the internal RADIO 

Home network 

The RADIO privacy-preserving data mining 

component accesses all data to respond to queries 

that observe the RASSP Protocol (cf. D5.6). 

Access through RASSP guarantees that these 

responses allow statistical aggregates to be 

computed over many RADIO Homes without 

revealing the values of any one of these Homes. 
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8.5 Data Services 

The main requirements that must be satisfied by the technologies used originate from the nature of the 

stored data and the nature of the consumers of those data. The output of the analysis algorithms (cf. 

Section 5.2, D3.3 Conceptual Architecture) is the log of the recognized events annotated with the type 

of the event, the actual time and date that the event occurred, and the duration or other measurement 

associated with the event, if any. 

Since the recognized events are recurrent this log forms essentially a set of time-series for each event 

type. A time-series database is a database that is optimized for handling time series data, promoting 

time as a first-class citizen and implement time-based operations in a more efficient way. 

This database needs to provide access as foreseen in Table 5. 

We used the InfluxDB database management system,6 an open source scalable time-series database that 

targets use cases that heavily use time-based metrics and sensor data in the IoT context. The current 

RADIO data schema contains a measurement (i.e., a database table) that includes all the higher-level 

events produced by the RADIO Home analysis algorithms. This measurement has the following fields: 

 event_type: the type of the event recognized, as tagged by the recognition algorithms, such as 

“4m-walking”, “Sitting-to-Standing” 

 time: the timestamp at which the event was recorded 

 duration: the duration of the event, if applicable 

 

 

                                                      
6 Cf. https://www.influxdata.com 
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9 ROBOT BEHAVIOUR 

9.1 Task Switching 

The action and node manager orchestrates the overall system, including reacting to user initiatives 

through the user device and initiating automated actions, except for home automation directly handled 

by the S&C suite. 

Orchestration was previously implemented by sending control messages and by starting and stopping 

ROS nodes. For the final prototype, all orchestration is carried out by setting nodes in and out of an 

“idle” state, where they are immediately available (i.e., the node process is executing) but they do not 

consume and process any messages, they do not publish any message, and only use minimal processing 

and network resources. 

9.1.1 Motivation and Requirements 

The orchestration system consists of two major parts: 

1. The communication system between the node manager and the rest of the ADL-related nodes 

that run in different machines (main controller - robot equivalently). 

2. The methodology to start and stop each ADL based on a variety of scenarios. 

Communication: 

The communication inside the RADIO system was mainly based on ROS topics. ROS topics are code-

named channels that contain specific content. Many nodes (processes) can subscribe (listen) to the same 

topic and also many nodes can publish (transmit data) to a topic. This architecture makes ROS topics 

very easy to use, since anyone can connect to a specific channel and then acquire or transmit information. 

Since ROS topics provide a many-to-many type of connection, they are more appropriate for data 

streams, disregarding their ease of use. In our node handling scenario, what we really needed was a way 

to send a start/stop signal from the main controller to the robot, to control the desired ADL related node. 

Thus, what was really needed was a one-to-one communication. In an earlier version of the RADIO 

orchestrator, the different nodes that made up the distributed Main Controller (Raspberry node, robot 

node) communicated over a control topic. ROS services provide a one-to-one connection, in which 

return data is possible. This provides a request-response protocol just like calling a method from within 

the code. 

Using ROS services enables us not only to safely transmit data to another node, but also get an answer 

from them, ensuring the normal flow of the procedure. Of course, requiring a response after each service 

call adds to the complexity of the system, but it is tolerable for the sake of robustness. 

Starting/Stopping ADL nodes: 

The management of ADL related nodes was based on starting and stopping their processes. This 

included at least two processes for each ADL, one for the processing and one for the consumer of its 

results (wrapper). In more extreme cases, like the 4-meter ADL, five processes had to be started/stopped 

in total. Managing the flow of the system by starting and stopping nodes is neither the most elegant nor 

the most efficient way. The problem of elegancy is pretty obvious: processes frequently starting and 

stopping keeping the operating system busy, managing all those changes. 
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Figure 27: Time (in sec) to load executable, start the process, and connect to the ROS middleware. 

Notes: Time measured for a relatively small and simple system of two nodes (joystick teleoperation receiver and velocity 

smoother), available here: https://github.com/RADIO-PROJECT-EU/turtlebot/tree/master/turtlebot_teleop 

Measurements are made on a NUC Intel Celeron @ 1.6GHz, 2GB memory, executables loaded from SSD, Ubuntu 14.04, 

ROS Indigo, only executing the OS, the ROS Master, and one other node that generates traffic for the experiment node to 

subscribe to. Measurements refer to the time from invoking node execution until the node has connected the ROS master, 

i.e., time includes process setup time, time to establish network socket to the ROS master, and time to register as a 

subscriber to a topic. 

The efficiency problem lies not only on the added operating system activity, but also on the fact the 

when a new ROS node starts, it takes approximately three to eight seconds for it to get registered to the 

master and initialize its subscribers (Figure 27).  

Utilizing the power of ROS Services, the latest version of the orchestration system was developed. In 

this version, all ADL related nodes are always running and offer a service that can alter their state based 

on received data. We will thoroughly discuss the architecture of this implementation in the next section. 

 

 
 

Figure 28: Orchestration system Figure 29: Node architecture 
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9.1.2 Architecture 

Figure 28 shows an abstract version of the current orchestration system. The Main Controller listens to 

commands from user devices like gamepads and Android mobile phones and then informs the 

corresponding nodes using ROS services. More specifically, the Raspberry Main Controller invokes the 

Robot Instruction Receiver Service to relay to the robot’s Main Controller the ADL code that needs to 

start or stop while simultaneously invokes the corresponding ADL wrapper’s Node State Service. When 

the robot receives the message from the Main Controller, it also sends a message to the selected ADL 

node with the desired state. All these messages between the Main Controller, the Robot and the ADL 

related nodes along with their wrappers, are sent using ROS services. Each time, the input data is the 

desired action, and the return value is the result of the requested process. 

Figure 29 shows an abstract architecture of a node that is involved in the newly implemented ROS 

service based state selection. In more detail, and as shown in the diagram, the node offers a service that 

receives as an input the desired state, and returns its current state. The possibility to just request the 

current state of each node, without altering its state has also been implemented. For example, a call on 

a State Service with the generic type <Service Type> in Python, would look like this: 

 

command = 1 

state_service = rospy.ServiceProxy('hpr_wrapper/node_state_service', <ServiceType> ) 

new_state = service(command) 

 

In the example above, the service 'hpr_wrapper/node_state_service' is the one provided by the 4-meter 

walk ADL wrapper. The command sent is the number “1” which then is translated in the service 

callback as a “Start message”, and enables the wrapper’s processing. Alternative command values for 

all the wrapper nodes include “0” for a “Stop Message” and “-1” for no state change. All three 

alternatives receive as an answer the current state of the node (running/idle). 

Specifically, for ADL recording, some nodes apart from the desired state, also receive the ADL code 

name and repetition. These extra parameters help in making the reports include human provided 

codenames that can distinguish multiple recordings of the same ADL. 

9.1.3 Implementation 

The above has been implemented in the main controller (both Raspberry-side and robot-side node) and 

in all ADL processing nodes and their wrappers: 

 

Package name and description 
Source code repository and release 

implementing task switching 

Node manager: The home computer-side node of the 

Node Manager. 

https://github.com/radio-project-

eu/radio_node_manager_main_controller  
v2.0 

Node manager: The robot-side node of the Node 

Manager. 

https://github.com/radio-project-

eu/radio_node_manager  
v2.0 

HumanPatterRecognition: Recognizes human 

walking patterns in laser scans and tracks walking. 

https://github.com/radio-project-

eu/HumanPatternRecognition  
v3.0.0 

HPR Wrapper: Uses HPR output to recognize and 

time “walked 4m” events. 

https://github.com/radio-project-

eu/hpr_wrapper  
v2.0 

https://github.com/radio-project-eu/radio_node_manager_main_controller
https://github.com/radio-project-eu/radio_node_manager_main_controller
https://github.com/radio-project-eu/radio_node_manager
https://github.com/radio-project-eu/radio_node_manager
https://github.com/radio-project-eu/HumanPatternRecognition
https://github.com/radio-project-eu/HumanPatternRecognition
https://github.com/radio-project-eu/hpr_wrapper
https://github.com/radio-project-eu/hpr_wrapper
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ROSVisual: Tracks moving objects in the RGB/depth 

modality and classifies motion as bed or chair transfer. 

https://github.com/radio-project-

eu/ros_visual  
v2.0 

ROSVisual Wrapper: Uses the output from 

ROSVisual to time chair and bed transfer events and 

to recognize and time “walked 4m” events. 

https://github.com/radio-project-

eu/ros_visual_wrapper  

v2.0 

Motion Analysis: Recognizes motion and classifies it 

as “bed transfer” and “pill intake” events. 

https://github.com/radio-project-

eu/motion_analysis  
v2.0 

Motion Analysis Wrapper: Uses the output from 

motion analysis to time the bed transfer event. 
https://github.com/radio-project-

eu/motion_analysis_wrapper  
v2.0 

Presence events: Uses the events published by the 

ZWave/ROS bridge, to log ADLs (TV watching, 

cooking, and presence events) inferred from the 

presence sensors and appliance usage sensors. 

https://github.com/radio-project-

eu/snc_events_wrapper  

v1.0 

Report generator: A ROS node that generates 

medical reports based on the information created by 

the wrappers. 

https://github.com/radio-project-

eu/radio_report_generator  

v1.0 

 

 

 

 

Figure 30: CPU usage of one of the four nodes that are responsible for the 4-meter walk ADL, measurements made using 

rostune  

 

Generally, for all the nodes complete understanding of their internal data structure was needed, in order 

to distinguish which of the values needed to re-initialize after each change of state, and which needed 

to stay unmodified. The following nodes needed deeper adaptation than a simple implementation of the 

state changing architecture: 

 

https://github.com/radio-project-eu/ros_visual
https://github.com/radio-project-eu/ros_visual
https://github.com/radio-project-eu/ros_visual_wrapper
https://github.com/radio-project-eu/ros_visual_wrapper
https://github.com/radio-project-eu/motion_analysis
https://github.com/radio-project-eu/motion_analysis
https://github.com/radio-project-eu/motion_analysis_wrapper
https://github.com/radio-project-eu/motion_analysis_wrapper
https://github.com/radio-project-eu/snc_events_wrapper
https://github.com/radio-project-eu/snc_events_wrapper
https://github.com/radio-project-eu/radio_report_generator
https://github.com/radio-project-eu/radio_report_generator
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4-meter walk ADL: 

This ADL’s method consists of four ROS nodes that are connected using a linked chain model. These 

nodes were at first designed to run specific tasks only during their initialization, so those parts of the 

code had to be modified in order to run each time the nodes come on the “running” state. Since those 

nodes are connected in a linked chain model, the first node in the chain has been given the ability to 

enable all other three nodes, by using their provided state service. functionality of starting and pausing 

their processing methods was much more complicated. 

Bed Transfer ADL and Pill Intake ADL 

The methods from these two ADLs are very sensitive to image changes, so their initialization should 

take that into account. When the camera driver is polled for an image, there is a small stutter that could 

cause the two ADLs to produce false results. Based on this observation, the two nodes first enter a 

“semi-running” state, in which they are subscribed to the image topic, but do not produce results. 

Although this process would not require more than one second, due to the possible network delay that 

could occur in a clutter network, there is a five second gap between the transition from “semi-running” 

to the “running” state. 

9.1.4 Measurements 

Figure 30 shows the CPU usage of one of the four nodes that are responsible for the 4-meter walk ADL. 

At first, the node is in “running” state, which means that it has already received a message via its state 

service. At approximately the 43rd second, the node received another message which made it set its 

state to idle. This is a representative example of how all the other nodes behave, and also how few CPU 

resources are consumed when idle.  

When idle, the nodes unsubscribe from all their subscribed topics, completely nullifying network usage. 

9.2 Navigation in Cluttered Spaces 

At the First Integrated Robotic Platform (D4.6), robot navigation was based on the standard parameters 

and configuration for navigation and obstacle avoidance. The following situation was occasionally 

observed during the first round of pilots at FHAG: the robot would remember that a corridor was 

congested with people and refuse to navigate to a goal that required passing through that corridor, even 

after the congestion has cleared. 

To address this, we added the provision that if the goal cannot be reached, previously discovered 

obstacles that are currently not visible are removed from the costmap and the costmap is re-initialzed 

from the static map, forcing the robot to double-check if the obstacles persist. The robot will only give 

up after trying twice. 
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10 CONCLUSIONS  

This deliverable presents the physical architecture of the RADIO Home, covering RADIO device 

interconnection and interfacing, specifications on interfacing the different domains, and on fast and 

energy efficient data processing in the distributed RADIO environment. More specifically, this 

deliverable includes the design of the physical architecture of the RADIO Home, and especially the 

wireless communications architecture between the RADIO Robot platform, the Smart Home devices, 

and the Main Controller that make up each RADIO Home. Second, the design of the architecture and 

the policies for managing the heterogeneous computing elements of the RADIO Home, including the 

central server, FPGAs, and the on-board Robot controller. Special care was given in investigating the 

most efficient way, in terms of power and delay overhead, to process different kinds of sensor data in 

the distributed RADIO environment and in observing the privacy for the user. 

With respect to communication substrate, the Robot interface is defined and implemented and the WiFi 

and BLE connectivity is verified. The Z-Wave devices are able to be accessed through the RESTful 

API in the Home Controller gateway. The backbone of the smart home architecture is the WIFI/LAN 

interconnection between the router, robot, and RADIO Home Controller gateways. The router enables 

the communication with the IoT Platform and the WIFI/LAN infrastructure enables the information 

exchange between each component.  

In addition as part of this work, alternative hardware and sensor positioning configurations are also 

investigated as part of this task with the focus on power and performance trade-offs between fixed 

function accelerators and more programmable (or even pure software) solutions. The programmable 

solutions offer more flexibility to provide several dedicated services to the end-users through software 

updates or extensions. However, fixed logic hardware solutions offer the significant advantage of 

privacy for two main reasons: i) the sensors data are pre-processed and immediately destroyed and ii) 

in case that further processing is required, this is performed on anonymized data (the outcome of the 

pre-processing step).  

Dedicated hardware components that include also special low power modes are implemented in the 

Picozed FPGA. In the low power mode, only the FPGA is active and performing periodically sensor 

update from the Python camera. The Python camera is directly connected to the FPGA hardware and 

therefore does not require an additional processor for transferring image data to the programmable logic. 

Therefore, all systems that are not required for camera usage can be put in sleep mode until the image 

processing core in the Python camera chain wakes up all other systems. 

A profile-driven, system-level approach to increase the autonomy of the robotic platform in AAL 

environments is benchmarked in experimental conditions via use case profiling. Moreover, a systematic 

methodology (realized as python tool) that outputs the autonomy of the robot for a range of battery 

recourses is also described. The inputs in our methodology are the daily activity patterns of the target 

elderly or disable people, information about the domestic environment, and the power figures of the 

robotic platform (with and without HW FPGA-based offloading policies). The daily activity patterns 

were collected by care-givers personnel during the third pilot phase of the RADIO project. The proposed 

methodology is considered as a useful tool for estimating the required battery resources (consequently 

the cost since it represents a significant part of the overall cost) of an AAL domestic robot. 

Finally, this report documents work on improving the behaviour of the robotic platform and its 

integration in the RADIO Home system. This includes improving the main controller, the main 

orchestrator of the overall system, as well as the individual components so that they can be efficiently 

activated and deactivated. 

 


